DIAMETER OF COMMUTING GRAPHS OF SYMPLECTIC ALGEBRAS
Let $F$ be an algebraically closed field of characteristic $0$ and let $\operatorname{sp}(2l,F)$ be the rank $l$ symplectic algebra of all $2l\times 2l$ matrices $x=\big(\!\begin{smallmatrix}A & B\\ C & -A^{t}\end{smallmatrix}\!\big)$ over $F$ , where $A^{t}$ is the transpose of $A$ and $B,C...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2019-12, Vol.100 (3), p.419-427 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$F$
be an algebraically closed field of characteristic
$0$
and let
$\operatorname{sp}(2l,F)$
be the rank
$l$
symplectic algebra of all
$2l\times 2l$
matrices
$x=\big(\!\begin{smallmatrix}A & B\\ C & -A^{t}\end{smallmatrix}\!\big)$
over
$F$
, where
$A^{t}$
is the transpose of
$A$
and
$B,C$
are symmetric matrices of order
$l$
. The commuting graph
$\unicode[STIX]{x1D6E4}(\operatorname{sp}(2l,F))$
of
$\operatorname{sp}(2l,F)$
is a graph whose vertex set consists of all nonzero elements in
$\operatorname{sp}(2l,F)$
and two distinct vertices
$x$
and
$y$
are adjacent if and only if
$xy=yx$
. We prove that the diameter of
$\unicode[STIX]{x1D6E4}(\operatorname{sp}(2l,F))$
is
$4$
when
$l>2$
. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972719000583 |