PRIMES IN ARITHMETIC PROGRESSIONS AND NONPRIMITIVE ROOTS
Let $p$ be a prime. If an integer $g$ generates a subgroup of index $t$ in $(\mathbb{Z}/p\mathbb{Z})^{\ast },$ then we say that $g$ is a $t$ -near primitive root modulo $p$ . We point out the easy result that each coprime residue class contains a subset of primes $p$ of positive natural density whic...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2019-12, Vol.100 (3), p.388-394 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
$p$
be a prime. If an integer
$g$
generates a subgroup of index
$t$
in
$(\mathbb{Z}/p\mathbb{Z})^{\ast },$
then we say that
$g$
is a
$t$
-near primitive root modulo
$p$
. We point out the easy result that each coprime residue class contains a subset of primes
$p$
of positive natural density which do not have
$g$
as a
$t$
-near primitive root and we prove a more difficult variant. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972719000443 |