PRIMES IN ARITHMETIC PROGRESSIONS AND NONPRIMITIVE ROOTS

Let $p$ be a prime. If an integer $g$ generates a subgroup of index $t$ in $(\mathbb{Z}/p\mathbb{Z})^{\ast },$ then we say that $g$ is a $t$ -near primitive root modulo $p$ . We point out the easy result that each coprime residue class contains a subset of primes $p$ of positive natural density whic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2019-12, Vol.100 (3), p.388-394
Hauptverfasser: MOREE, PIETER, SHA, MIN
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let $p$ be a prime. If an integer $g$ generates a subgroup of index $t$ in $(\mathbb{Z}/p\mathbb{Z})^{\ast },$ then we say that $g$ is a $t$ -near primitive root modulo $p$ . We point out the easy result that each coprime residue class contains a subset of primes $p$ of positive natural density which do not have $g$ as a $t$ -near primitive root and we prove a more difficult variant.
ISSN:0004-9727
1755-1633
DOI:10.1017/S0004972719000443