OVERPARTITIONS RELATED TO THE MOCK THETA FUNCTION
Recently, Brietzke, Silva and Sellers [‘Congruences related to an eighth order mock theta function of Gordon and McIntosh’, J. Math. Anal. Appl. 479 (2019), 62–89] studied the number $v_{0}(n)$ of overpartitions of $n$ into odd parts without gaps between the nonoverlined parts, whose generating func...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Australian Mathematical Society 2020-12, Vol.102 (3), p.410-417 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, Brietzke, Silva and Sellers [‘Congruences related to an eighth order mock theta function of Gordon and McIntosh’,
J. Math. Anal. Appl.
479
(2019), 62–89] studied the number
$v_{0}(n)$
of overpartitions of
$n$
into odd parts without gaps between the nonoverlined parts, whose generating function is related to the mock theta function
$V_{0}(q)$
of order 8. In this paper we first present a short proof of the 3-dissection for the generating function of
$v_{0}(2n)$
. Then we establish three congruences for
$v_{0}(n)$
along certain progressions which are subsequences of the integers
$4n+3$
. |
---|---|
ISSN: | 0004-9727 1755-1633 |
DOI: | 10.1017/S0004972719001618 |