Instance-Optimal Differentially Private Estimation

In this work, we study local minimax convergence estimation rates subject to \(\epsilon\)-differential privacy. Unlike worst-case rates, which may be conservative, algorithms that are locally minimax optimal must adapt to easy instances of the problem. We construct locally minimax differentially pri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-10
Hauptverfasser: McMillan, Audra, Smith, Adam, Ullman, Jon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we study local minimax convergence estimation rates subject to \(\epsilon\)-differential privacy. Unlike worst-case rates, which may be conservative, algorithms that are locally minimax optimal must adapt to easy instances of the problem. We construct locally minimax differentially private estimators for one-parameter exponential families and estimating the tail rate of a distribution. In these cases, we show that optimal algorithms for simple hypothesis testing, namely the recent optimal private testers of Canonne et al. (2019), directly inform the design of locally minimax estimation algorithms.
ISSN:2331-8422