Research on the Design of Surgical Auxiliary Equipment Based on AHP, QFD, and PUGH Decision Matrix

To improve the efficiency of medical staff in surgical operations and meet the physiological and psychological needs of surgeons, nurses, and patients during the operations, surgical auxiliary equipment is designed. This paper builds a design research model based on AHP (analytic hierarchy process),...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2022-10, Vol.2022, p.1-13
Hauptverfasser: Zhu, Tian-Lu, Li, Ya-Jun, Wu, Ceng-Juan, Yue, Han, Zhao, Yi-Qian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To improve the efficiency of medical staff in surgical operations and meet the physiological and psychological needs of surgeons, nurses, and patients during the operations, surgical auxiliary equipment is designed. This paper builds a design research model based on AHP (analytic hierarchy process), QFD (quality function deployment), and Platts conceptual decision matrix (PUGH decision matrix). Firstly, the user requirements are weighed through AHP analysis, and the design elements are prioritized based on the weight values. Then, QFD is used to analyze the design features of surgical auxiliary equipment from the aspects of structure, function, and shape, and a house of quality is established to get the significance of design features. Finally, the PUGH decision matrix is constructed to screen and evaluate multiple schemes, and the optimal design scheme is obtained. From the perspective of user requirements and product design characteristics, the significance of design elements is analyzed and calculated, which guides the design practices to complete the innovative design of surgical auxiliary equipment. The combination of AHP, QFD, and PUGH decision matrices are introduced into the innovative design of surgical auxiliary equipment, effectively avoiding subjective factors in product design, improving the scientific nature of the design, and providing new methods and ideas for the design and research of surgical auxiliary equipment and similar products.
ISSN:1024-123X
1563-5147
DOI:10.1155/2022/4327390