Regularity Results for Bounded Solutions to Obstacle Problems with Non-standard Growth Conditions
In this paper, we consider a class of obstacle problems of the type min ∫ Ω f ( x , D v ) d x : v ∈ K ψ ( Ω ) where ψ is the obstacle, K ψ ( Ω ) = { v ∈ u 0 + W 0 1 , p ( Ω , R ) : v ≥ ψ a.e. in Ω } , with u 0 ∈ W 1 , p ( Ω ) a fixed boundary datum, the class of the admissible functions and the inte...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2022-12, Vol.19 (6), Article 270 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we consider a class of obstacle problems of the type
min
∫
Ω
f
(
x
,
D
v
)
d
x
:
v
∈
K
ψ
(
Ω
)
where
ψ
is the obstacle,
K
ψ
(
Ω
)
=
{
v
∈
u
0
+
W
0
1
,
p
(
Ω
,
R
)
:
v
≥
ψ
a.e. in
Ω
}
, with
u
0
∈
W
1
,
p
(
Ω
)
a fixed boundary datum, the class of the admissible functions and the integrand
f
(
x
,
Dv
) satisfies non standard (
p
,
q
)-growth conditions. We prove higher differentiability results for bounded solutions of the obstacle problem under dimension-free conditions on the gap between the growth and the ellipticity exponents. Moreover, also the Sobolev assumption on the partial map
x
↦
A
(
x
,
ξ
)
is independent of the dimension
n
and this, in some cases, allows us to manage coefficients in a Sobolev class below the critical one
W
1
,
n
. |
---|---|
ISSN: | 1660-5446 1660-5454 |
DOI: | 10.1007/s00009-022-02162-8 |