Regularity Results for Bounded Solutions to Obstacle Problems with Non-standard Growth Conditions

In this paper, we consider a class of obstacle problems of the type min ∫ Ω f ( x , D v ) d x : v ∈ K ψ ( Ω ) where ψ is the obstacle, K ψ ( Ω ) = { v ∈ u 0 + W 0 1 , p ( Ω , R ) : v ≥ ψ a.e. in Ω } , with u 0 ∈ W 1 , p ( Ω ) a fixed boundary datum, the class of the admissible functions and the inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediterranean journal of mathematics 2022-12, Vol.19 (6), Article 270
Hauptverfasser: Gentile, Andrea, Giova, Raffaella, Torricelli, Andrea
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we consider a class of obstacle problems of the type min ∫ Ω f ( x , D v ) d x : v ∈ K ψ ( Ω ) where ψ is the obstacle, K ψ ( Ω ) = { v ∈ u 0 + W 0 1 , p ( Ω , R ) : v ≥ ψ a.e. in Ω } , with u 0 ∈ W 1 , p ( Ω ) a fixed boundary datum, the class of the admissible functions and the integrand f ( x ,  Dv ) satisfies non standard ( p ,  q )-growth conditions. We prove higher differentiability results for bounded solutions of the obstacle problem under dimension-free conditions on the gap between the growth and the ellipticity exponents. Moreover, also the Sobolev assumption on the partial map x ↦ A ( x , ξ ) is independent of the dimension n and this, in some cases, allows us to manage coefficients in a Sobolev class below the critical one W 1 , n .
ISSN:1660-5446
1660-5454
DOI:10.1007/s00009-022-02162-8