Microbial bioremediation of pesticides in agricultural soils: an integrative review on natural attenuation, bioaugmentation and biostimulation
Pesticides can impact the agriculture and environmental sector both positively and negatively. An over-reliance on their application to crops to control pests can disturb ecosystems. Therefore, the scientific community and policymakers must be aware of the commitment and active stance they need to t...
Gespeichert in:
Veröffentlicht in: | Reviews in environmental science and biotechnology 2022-12, Vol.21 (4), p.851-876 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pesticides can impact the agriculture and environmental sector both positively and negatively. An over-reliance on their application to crops to control pests can disturb ecosystems. Therefore, the scientific community and policymakers must be aware of the commitment and active stance they need to take up to effectively elaborate on solutions toward mitigating environmental contamination over the coming few years. We, therefore, reviewed the academic literature on bioremediation from 2018 to 2021 (the latest year of complete publication) to provide a meta-analysis of microbial systems capable of dissipating pesticides from agricultural soils. Natural attenuation can control lindane; however, it is time-consuming and unconvincing to scale. By introducing a suite of microorganisms into the system for substrate-specific biodegradation, we can boost the bioprocess and ultimately level up its cost-effectiveness. Options of microorganisms for bioaugmentation include the fungus
Trametes versicolor
and the bacteria
Pigmentiphaga
spp. and
Paenanthrobacter
spp. Bioaugmentation and biostimulation are enablers of environmental reclamation in agroecosystems. However, those biocatalytic strategies can be costly while manifesting as degraders to ecological sustainability. For instance, allochthonous and recombinant microorganisms can reduce genetic diversity by promoting antagonistic relationships. In addition, some stimulant minerals can be more toxic and harmful to beneficial non-target organisms than the target pesticide. Prudence and safety are significant aspects of ensuring environmentally safer applications for pesticide-degrading approaches. Therefore, our analytical insights can provide knowledge to progress the field’s prominence in developing high-throughput microbiological removal of hazardous active compounds from agricultural soils. |
---|---|
ISSN: | 1569-1705 1572-9826 |
DOI: | 10.1007/s11157-022-09637-w |