Unprecedented differences in phytoplankton community structures in the Amundsen Sea Polynyas, West Antarctica
In the Antarctic coast, ice shelves are rapidly thinning and retreating due to global warming. Basal melt water influences marine life, particularly the phytoplankton, which are directly affected by changes in physicochemical environments. However, there is limited in situ data over large areas in t...
Gespeichert in:
Veröffentlicht in: | Environmental research letters 2022-11, Vol.17 (11), p.114022 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the Antarctic coast, ice shelves are rapidly thinning and retreating due to global warming. Basal melt water influences marine life, particularly the phytoplankton, which are directly affected by changes in physicochemical environments. However, there is limited
in situ
data over large areas in the Amundsen Sea, which is currently a hotspot for rapidly thinning ice shelves in West Antarctica. During the austral summer cruise of 2020, phytoplankton species abundance was investigated along the Amundsen Sea coast using an automated continuous observation instrument, the Imaging FlowCytobot. The phytoplankton community was dominated by
Phaeocystis antarctica
in most coastal waters of the Amundsen Sea, as previously reported; however, unexpected blooms of diatom
Dactyliosolen tenuijunctus
were observed throughout the Pine Island Bay region at a high dominance rate (∼90%) and abundance (>10
7
cells l
−1
).
D. tenuijunctus
is a weakly silicified diatom and its massive bloom in the water column has been rarely reported from the Antarctic Ocean. The dramatic difference in phytoplankton compositions between these adjacent polynyas probably indicates an unstable response of phytoplankton to ice melting conditions. They could play a different role in the marine food web and carbon flux compared to other diatoms and
P. antarctica
. Therefore, further research is warranted to predict the biological and biogeochemical impacts of future melting conditions. |
---|---|
ISSN: | 1748-9326 1748-9326 |
DOI: | 10.1088/1748-9326/ac9a5f |