On the Aα-spectral Radius of Graphs Without Large Matchings

Let G be an n -vertex graph. A matching in G is a set of independent edges, i.e., no two edges in the set are adjacent in G . The matching number is the maximal size of a matching in G . Nikiforov (Appl Anal Discrete Math 11(1):81–107, 2017) proposed the A α -matrix of a graph G , as follows: A α (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Malaysian Mathematical Sciences Society 2022-11, Vol.45 (6), p.3131-3156
Hauptverfasser: Hao, Yifang, Li, Shuchao, Zhao, Qin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let G be an n -vertex graph. A matching in G is a set of independent edges, i.e., no two edges in the set are adjacent in G . The matching number is the maximal size of a matching in G . Nikiforov (Appl Anal Discrete Math 11(1):81–107, 2017) proposed the A α -matrix of a graph G , as follows: A α ( G ) = α D ( G ) + ( 1 - α ) A ( G ) , α ∈ [ 0 , 1 ] , where D ( G ) and A ( G ) are the diagonal degree matrix and adjacency matrix of G , respectively. In this contribution, we establish some A α -spectral conditions to guarantee that there do not exist large matchings in a graph G ,  recovering the previous results and obtaining similar results for a wide variety of spectral conditions from the A α -matrix. Our main tools are the Berge–Tutte formula and the double leading eigenvectors.
ISSN:0126-6705
2180-4206
DOI:10.1007/s40840-022-01363-4