Local well-posedness of the periodic nonlinear Schrödinger equation with a quadratic nonlinearity \(\overline{u}^2\) in negative Sobolev spaces

We study low regularity local well-posedness of the nonlinear Schr\"odinger equation (NLS) with the quadratic nonlinearity \(\overline{u}^2\), posed on one-dimensional and two-dimensional tori. While the relevant bilinear estimate with respect to the \(X^{s, b}\)-space is known to fail when the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-07
1. Verfasser: Liu, Ruoyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Liu, Ruoyuan
description We study low regularity local well-posedness of the nonlinear Schr\"odinger equation (NLS) with the quadratic nonlinearity \(\overline{u}^2\), posed on one-dimensional and two-dimensional tori. While the relevant bilinear estimate with respect to the \(X^{s, b}\)-space is known to fail when the regularity \(s\) is below some threshold value, we establish local well-posedness for such low regularity by introducing modifications on the \(X^{s, b}\)-space.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2729741311</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2729741311</sourcerecordid><originalsourceid>FETCH-proquest_journals_27297413113</originalsourceid><addsrcrecordid>eNqNi8FqwkAURQehoLT-w4Nu7CKQzGija7G46M4ugzImTzMyvBfnTSJS-g_9mv5Af6wpdNGlq8s999yBGmljsmQ-1XqoxiKnNE31c65nMzNSn69cWg8X9D5pWLAiFAE-QKwRGgyOK1cCMXlHaANsyjp8f1WOjhgAz62NjgkuLtZgoa9V6Mm_g4tXKCYFdxh-wXv7sdXFEzgCwmOvdggb3rPHDqSxJcqDujtYLzj-y3v1-LJ6W66TJvC5RYm7E7eB-mmnc73Ip5nJMnOb9QPyAlhS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729741311</pqid></control><display><type>article</type><title>Local well-posedness of the periodic nonlinear Schrödinger equation with a quadratic nonlinearity \(\overline{u}^2\) in negative Sobolev spaces</title><source>Free E- Journals</source><creator>Liu, Ruoyuan</creator><creatorcontrib>Liu, Ruoyuan</creatorcontrib><description>We study low regularity local well-posedness of the nonlinear Schr\"odinger equation (NLS) with the quadratic nonlinearity \(\overline{u}^2\), posed on one-dimensional and two-dimensional tori. While the relevant bilinear estimate with respect to the \(X^{s, b}\)-space is known to fail when the regularity \(s\) is below some threshold value, we establish local well-posedness for such low regularity by introducing modifications on the \(X^{s, b}\)-space.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Nonlinearity ; Regularity ; Schrodinger equation ; Sobolev space ; Toruses ; Well posed problems</subject><ispartof>arXiv.org, 2023-07</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Liu, Ruoyuan</creatorcontrib><title>Local well-posedness of the periodic nonlinear Schrödinger equation with a quadratic nonlinearity \(\overline{u}^2\) in negative Sobolev spaces</title><title>arXiv.org</title><description>We study low regularity local well-posedness of the nonlinear Schr\"odinger equation (NLS) with the quadratic nonlinearity \(\overline{u}^2\), posed on one-dimensional and two-dimensional tori. While the relevant bilinear estimate with respect to the \(X^{s, b}\)-space is known to fail when the regularity \(s\) is below some threshold value, we establish local well-posedness for such low regularity by introducing modifications on the \(X^{s, b}\)-space.</description><subject>Nonlinearity</subject><subject>Regularity</subject><subject>Schrodinger equation</subject><subject>Sobolev space</subject><subject>Toruses</subject><subject>Well posed problems</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi8FqwkAURQehoLT-w4Nu7CKQzGija7G46M4ugzImTzMyvBfnTSJS-g_9mv5Af6wpdNGlq8s999yBGmljsmQ-1XqoxiKnNE31c65nMzNSn69cWg8X9D5pWLAiFAE-QKwRGgyOK1cCMXlHaANsyjp8f1WOjhgAz62NjgkuLtZgoa9V6Mm_g4tXKCYFdxh-wXv7sdXFEzgCwmOvdggb3rPHDqSxJcqDujtYLzj-y3v1-LJ6W66TJvC5RYm7E7eB-mmnc73Ip5nJMnOb9QPyAlhS</recordid><startdate>20230714</startdate><enddate>20230714</enddate><creator>Liu, Ruoyuan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20230714</creationdate><title>Local well-posedness of the periodic nonlinear Schrödinger equation with a quadratic nonlinearity \(\overline{u}^2\) in negative Sobolev spaces</title><author>Liu, Ruoyuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_27297413113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Nonlinearity</topic><topic>Regularity</topic><topic>Schrodinger equation</topic><topic>Sobolev space</topic><topic>Toruses</topic><topic>Well posed problems</topic><toplevel>online_resources</toplevel><creatorcontrib>Liu, Ruoyuan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Ruoyuan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Local well-posedness of the periodic nonlinear Schrödinger equation with a quadratic nonlinearity \(\overline{u}^2\) in negative Sobolev spaces</atitle><jtitle>arXiv.org</jtitle><date>2023-07-14</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We study low regularity local well-posedness of the nonlinear Schr\"odinger equation (NLS) with the quadratic nonlinearity \(\overline{u}^2\), posed on one-dimensional and two-dimensional tori. While the relevant bilinear estimate with respect to the \(X^{s, b}\)-space is known to fail when the regularity \(s\) is below some threshold value, we establish local well-posedness for such low regularity by introducing modifications on the \(X^{s, b}\)-space.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2729741311
source Free E- Journals
subjects Nonlinearity
Regularity
Schrodinger equation
Sobolev space
Toruses
Well posed problems
title Local well-posedness of the periodic nonlinear Schrödinger equation with a quadratic nonlinearity \(\overline{u}^2\) in negative Sobolev spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A45%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Local%20well-posedness%20of%20the%20periodic%20nonlinear%20Schr%C3%B6dinger%20equation%20with%20a%20quadratic%20nonlinearity%20%5C(%5Coverline%7Bu%7D%5E2%5C)%20in%20negative%20Sobolev%20spaces&rft.jtitle=arXiv.org&rft.au=Liu,%20Ruoyuan&rft.date=2023-07-14&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2729741311%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729741311&rft_id=info:pmid/&rfr_iscdi=true