Local well-posedness of the periodic nonlinear Schrödinger equation with a quadratic nonlinearity \(\overline{u}^2\) in negative Sobolev spaces
We study low regularity local well-posedness of the nonlinear Schr\"odinger equation (NLS) with the quadratic nonlinearity \(\overline{u}^2\), posed on one-dimensional and two-dimensional tori. While the relevant bilinear estimate with respect to the \(X^{s, b}\)-space is known to fail when the...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-07 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study low regularity local well-posedness of the nonlinear Schr\"odinger equation (NLS) with the quadratic nonlinearity \(\overline{u}^2\), posed on one-dimensional and two-dimensional tori. While the relevant bilinear estimate with respect to the \(X^{s, b}\)-space is known to fail when the regularity \(s\) is below some threshold value, we establish local well-posedness for such low regularity by introducing modifications on the \(X^{s, b}\)-space. |
---|---|
ISSN: | 2331-8422 |