Local well-posedness of the periodic nonlinear Schrödinger equation with a quadratic nonlinearity \(\overline{u}^2\) in negative Sobolev spaces

We study low regularity local well-posedness of the nonlinear Schr\"odinger equation (NLS) with the quadratic nonlinearity \(\overline{u}^2\), posed on one-dimensional and two-dimensional tori. While the relevant bilinear estimate with respect to the \(X^{s, b}\)-space is known to fail when the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-07
1. Verfasser: Liu, Ruoyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study low regularity local well-posedness of the nonlinear Schr\"odinger equation (NLS) with the quadratic nonlinearity \(\overline{u}^2\), posed on one-dimensional and two-dimensional tori. While the relevant bilinear estimate with respect to the \(X^{s, b}\)-space is known to fail when the regularity \(s\) is below some threshold value, we establish local well-posedness for such low regularity by introducing modifications on the \(X^{s, b}\)-space.
ISSN:2331-8422