On the probability of positive finite-time Lyapunov exponents on strange non-chaotic attractors

We study strange non-chaotic attractors in a class of quasiperiodically forced monotone interval maps known as pinched skew products. We prove that the probability of positive time-N Lyapunov exponents, with respect to the unique physical measure on the attractor, decays exponentially as N goes to i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-11
Hauptverfasser: Flavia Remo, Fuhrmann, Gabriel, Jäger, Tobias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study strange non-chaotic attractors in a class of quasiperiodically forced monotone interval maps known as pinched skew products. We prove that the probability of positive time-N Lyapunov exponents, with respect to the unique physical measure on the attractor, decays exponentially as N goes to infinity. The motivation for this work comes from the study of finite-time Lyapunov exponents as possible early-warning signals of critical transitions in the context of forced dynamics.
ISSN:2331-8422