An error bound for the time-sliced thawed Gaussian propagation method

We study the time-sliced thawed Gaussian propagation method, which was recently proposed for solving the time-dependent Schrödinger equation. We introduce a triplet of quadrature-based analysis, synthesis and re-initialization operators to give a rigorous mathematical formulation of the method. Furt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2022-11, Vol.152 (3), p.511-551
Hauptverfasser: Bergold, Paul, Lasser, Caroline
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 551
container_issue 3
container_start_page 511
container_title Numerische Mathematik
container_volume 152
creator Bergold, Paul
Lasser, Caroline
description We study the time-sliced thawed Gaussian propagation method, which was recently proposed for solving the time-dependent Schrödinger equation. We introduce a triplet of quadrature-based analysis, synthesis and re-initialization operators to give a rigorous mathematical formulation of the method. Further, we derive combined error bounds for the discretization of the wave packet transform and the time-propagation of the thawed Gaussian basis functions. Numerical experiments in 1D illustrate the theoretical results.
doi_str_mv 10.1007/s00211-022-01319-7
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2729558998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2729558998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-5c08d94c23d52d1ca638bf8c07a3deaadb0345ea62f171b3b24ce30c110e75883</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU8Fz9GZpGma47Ksq7DgRcFbSJN0t8u2XZMW8d-btYI3T_MG3nszfITcItwjgHyIAAyRAmMUkKOi8ozMQOWCcpaL86SBKSqUer8kVzHuAVAWOc7IatFlPoQ-ZFU_di6rkxp2Phua1tN4aKx3aTefaazNGGNjuuwY-qPZmqHpu6z1w6531-SiNofob37nnLw9rl6XT3Tzsn5eLjbU8oIPVFgoncot404wh9YUvKzq0oI03HljXAU8F94UrEaJFa9Ybj0HiwheirLkc3I39aYXPkYfB73vx9Clk5pJpoQolTq52OSyoY8x-FofQ9Oa8KUR9AmXnnDphEv_4NIyhfgUisncbX34q_4n9Q1yAmz5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729558998</pqid></control><display><type>article</type><title>An error bound for the time-sliced thawed Gaussian propagation method</title><source>Springer Nature - Complete Springer Journals</source><creator>Bergold, Paul ; Lasser, Caroline</creator><creatorcontrib>Bergold, Paul ; Lasser, Caroline</creatorcontrib><description>We study the time-sliced thawed Gaussian propagation method, which was recently proposed for solving the time-dependent Schrödinger equation. We introduce a triplet of quadrature-based analysis, synthesis and re-initialization operators to give a rigorous mathematical formulation of the method. Further, we derive combined error bounds for the discretization of the wave packet transform and the time-propagation of the thawed Gaussian basis functions. Numerical experiments in 1D illustrate the theoretical results.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-022-01319-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Basis functions ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Numerical and Computational Physics ; Operators (mathematics) ; Quadratures ; Schrodinger equation ; Simulation ; Theoretical ; Time dependence ; Wave packets ; Wave propagation</subject><ispartof>Numerische Mathematik, 2022-11, Vol.152 (3), p.511-551</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-5c08d94c23d52d1ca638bf8c07a3deaadb0345ea62f171b3b24ce30c110e75883</citedby><cites>FETCH-LOGICAL-c363t-5c08d94c23d52d1ca638bf8c07a3deaadb0345ea62f171b3b24ce30c110e75883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00211-022-01319-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00211-022-01319-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Bergold, Paul</creatorcontrib><creatorcontrib>Lasser, Caroline</creatorcontrib><title>An error bound for the time-sliced thawed Gaussian propagation method</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>We study the time-sliced thawed Gaussian propagation method, which was recently proposed for solving the time-dependent Schrödinger equation. We introduce a triplet of quadrature-based analysis, synthesis and re-initialization operators to give a rigorous mathematical formulation of the method. Further, we derive combined error bounds for the discretization of the wave packet transform and the time-propagation of the thawed Gaussian basis functions. Numerical experiments in 1D illustrate the theoretical results.</description><subject>Basis functions</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Operators (mathematics)</subject><subject>Quadratures</subject><subject>Schrodinger equation</subject><subject>Simulation</subject><subject>Theoretical</subject><subject>Time dependence</subject><subject>Wave packets</subject><subject>Wave propagation</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEFLxDAQhYMouK7-AU8Fz9GZpGma47Ksq7DgRcFbSJN0t8u2XZMW8d-btYI3T_MG3nszfITcItwjgHyIAAyRAmMUkKOi8ozMQOWCcpaL86SBKSqUer8kVzHuAVAWOc7IatFlPoQ-ZFU_di6rkxp2Phua1tN4aKx3aTefaazNGGNjuuwY-qPZmqHpu6z1w6531-SiNofob37nnLw9rl6XT3Tzsn5eLjbU8oIPVFgoncot404wh9YUvKzq0oI03HljXAU8F94UrEaJFa9Ybj0HiwheirLkc3I39aYXPkYfB73vx9Clk5pJpoQolTq52OSyoY8x-FofQ9Oa8KUR9AmXnnDphEv_4NIyhfgUisncbX34q_4n9Q1yAmz5</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Bergold, Paul</creator><creator>Lasser, Caroline</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221101</creationdate><title>An error bound for the time-sliced thawed Gaussian propagation method</title><author>Bergold, Paul ; Lasser, Caroline</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-5c08d94c23d52d1ca638bf8c07a3deaadb0345ea62f171b3b24ce30c110e75883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Basis functions</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Operators (mathematics)</topic><topic>Quadratures</topic><topic>Schrodinger equation</topic><topic>Simulation</topic><topic>Theoretical</topic><topic>Time dependence</topic><topic>Wave packets</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergold, Paul</creatorcontrib><creatorcontrib>Lasser, Caroline</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergold, Paul</au><au>Lasser, Caroline</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An error bound for the time-sliced thawed Gaussian propagation method</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>152</volume><issue>3</issue><spage>511</spage><epage>551</epage><pages>511-551</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>We study the time-sliced thawed Gaussian propagation method, which was recently proposed for solving the time-dependent Schrödinger equation. We introduce a triplet of quadrature-based analysis, synthesis and re-initialization operators to give a rigorous mathematical formulation of the method. Further, we derive combined error bounds for the discretization of the wave packet transform and the time-propagation of the thawed Gaussian basis functions. Numerical experiments in 1D illustrate the theoretical results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-022-01319-7</doi><tpages>41</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0029-599X
ispartof Numerische Mathematik, 2022-11, Vol.152 (3), p.511-551
issn 0029-599X
0945-3245
language eng
recordid cdi_proquest_journals_2729558998
source Springer Nature - Complete Springer Journals
subjects Basis functions
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical Analysis
Numerical and Computational Physics
Operators (mathematics)
Quadratures
Schrodinger equation
Simulation
Theoretical
Time dependence
Wave packets
Wave propagation
title An error bound for the time-sliced thawed Gaussian propagation method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20error%20bound%20for%20the%20time-sliced%20thawed%20Gaussian%20propagation%20method&rft.jtitle=Numerische%20Mathematik&rft.au=Bergold,%20Paul&rft.date=2022-11-01&rft.volume=152&rft.issue=3&rft.spage=511&rft.epage=551&rft.pages=511-551&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-022-01319-7&rft_dat=%3Cproquest_cross%3E2729558998%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729558998&rft_id=info:pmid/&rfr_iscdi=true