An error bound for the time-sliced thawed Gaussian propagation method
We study the time-sliced thawed Gaussian propagation method, which was recently proposed for solving the time-dependent Schrödinger equation. We introduce a triplet of quadrature-based analysis, synthesis and re-initialization operators to give a rigorous mathematical formulation of the method. Furt...
Gespeichert in:
Veröffentlicht in: | Numerische Mathematik 2022-11, Vol.152 (3), p.511-551 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 551 |
---|---|
container_issue | 3 |
container_start_page | 511 |
container_title | Numerische Mathematik |
container_volume | 152 |
creator | Bergold, Paul Lasser, Caroline |
description | We study the time-sliced thawed Gaussian propagation method, which was recently proposed for solving the time-dependent Schrödinger equation. We introduce a triplet of quadrature-based analysis, synthesis and re-initialization operators to give a rigorous mathematical formulation of the method. Further, we derive combined error bounds for the discretization of the wave packet transform and the time-propagation of the thawed Gaussian basis functions. Numerical experiments in 1D illustrate the theoretical results. |
doi_str_mv | 10.1007/s00211-022-01319-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2729558998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2729558998</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-5c08d94c23d52d1ca638bf8c07a3deaadb0345ea62f171b3b24ce30c110e75883</originalsourceid><addsrcrecordid>eNp9kEFLxDAQhYMouK7-AU8Fz9GZpGma47Ksq7DgRcFbSJN0t8u2XZMW8d-btYI3T_MG3nszfITcItwjgHyIAAyRAmMUkKOi8ozMQOWCcpaL86SBKSqUer8kVzHuAVAWOc7IatFlPoQ-ZFU_di6rkxp2Phua1tN4aKx3aTefaazNGGNjuuwY-qPZmqHpu6z1w6531-SiNofob37nnLw9rl6XT3Tzsn5eLjbU8oIPVFgoncot404wh9YUvKzq0oI03HljXAU8F94UrEaJFa9Ybj0HiwheirLkc3I39aYXPkYfB73vx9Clk5pJpoQolTq52OSyoY8x-FofQ9Oa8KUR9AmXnnDphEv_4NIyhfgUisncbX34q_4n9Q1yAmz5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729558998</pqid></control><display><type>article</type><title>An error bound for the time-sliced thawed Gaussian propagation method</title><source>Springer Nature - Complete Springer Journals</source><creator>Bergold, Paul ; Lasser, Caroline</creator><creatorcontrib>Bergold, Paul ; Lasser, Caroline</creatorcontrib><description>We study the time-sliced thawed Gaussian propagation method, which was recently proposed for solving the time-dependent Schrödinger equation. We introduce a triplet of quadrature-based analysis, synthesis and re-initialization operators to give a rigorous mathematical formulation of the method. Further, we derive combined error bounds for the discretization of the wave packet transform and the time-propagation of the thawed Gaussian basis functions. Numerical experiments in 1D illustrate the theoretical results.</description><identifier>ISSN: 0029-599X</identifier><identifier>EISSN: 0945-3245</identifier><identifier>DOI: 10.1007/s00211-022-01319-7</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Basis functions ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical Analysis ; Numerical and Computational Physics ; Operators (mathematics) ; Quadratures ; Schrodinger equation ; Simulation ; Theoretical ; Time dependence ; Wave packets ; Wave propagation</subject><ispartof>Numerische Mathematik, 2022-11, Vol.152 (3), p.511-551</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-5c08d94c23d52d1ca638bf8c07a3deaadb0345ea62f171b3b24ce30c110e75883</citedby><cites>FETCH-LOGICAL-c363t-5c08d94c23d52d1ca638bf8c07a3deaadb0345ea62f171b3b24ce30c110e75883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00211-022-01319-7$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00211-022-01319-7$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Bergold, Paul</creatorcontrib><creatorcontrib>Lasser, Caroline</creatorcontrib><title>An error bound for the time-sliced thawed Gaussian propagation method</title><title>Numerische Mathematik</title><addtitle>Numer. Math</addtitle><description>We study the time-sliced thawed Gaussian propagation method, which was recently proposed for solving the time-dependent Schrödinger equation. We introduce a triplet of quadrature-based analysis, synthesis and re-initialization operators to give a rigorous mathematical formulation of the method. Further, we derive combined error bounds for the discretization of the wave packet transform and the time-propagation of the thawed Gaussian basis functions. Numerical experiments in 1D illustrate the theoretical results.</description><subject>Basis functions</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical Analysis</subject><subject>Numerical and Computational Physics</subject><subject>Operators (mathematics)</subject><subject>Quadratures</subject><subject>Schrodinger equation</subject><subject>Simulation</subject><subject>Theoretical</subject><subject>Time dependence</subject><subject>Wave packets</subject><subject>Wave propagation</subject><issn>0029-599X</issn><issn>0945-3245</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp9kEFLxDAQhYMouK7-AU8Fz9GZpGma47Ksq7DgRcFbSJN0t8u2XZMW8d-btYI3T_MG3nszfITcItwjgHyIAAyRAmMUkKOi8ozMQOWCcpaL86SBKSqUer8kVzHuAVAWOc7IatFlPoQ-ZFU_di6rkxp2Phua1tN4aKx3aTefaazNGGNjuuwY-qPZmqHpu6z1w6531-SiNofob37nnLw9rl6XT3Tzsn5eLjbU8oIPVFgoncot404wh9YUvKzq0oI03HljXAU8F94UrEaJFa9Ybj0HiwheirLkc3I39aYXPkYfB73vx9Clk5pJpoQolTq52OSyoY8x-FofQ9Oa8KUR9AmXnnDphEv_4NIyhfgUisncbX34q_4n9Q1yAmz5</recordid><startdate>20221101</startdate><enddate>20221101</enddate><creator>Bergold, Paul</creator><creator>Lasser, Caroline</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20221101</creationdate><title>An error bound for the time-sliced thawed Gaussian propagation method</title><author>Bergold, Paul ; Lasser, Caroline</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-5c08d94c23d52d1ca638bf8c07a3deaadb0345ea62f171b3b24ce30c110e75883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Basis functions</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical Analysis</topic><topic>Numerical and Computational Physics</topic><topic>Operators (mathematics)</topic><topic>Quadratures</topic><topic>Schrodinger equation</topic><topic>Simulation</topic><topic>Theoretical</topic><topic>Time dependence</topic><topic>Wave packets</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergold, Paul</creatorcontrib><creatorcontrib>Lasser, Caroline</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Numerische Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergold, Paul</au><au>Lasser, Caroline</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An error bound for the time-sliced thawed Gaussian propagation method</atitle><jtitle>Numerische Mathematik</jtitle><stitle>Numer. Math</stitle><date>2022-11-01</date><risdate>2022</risdate><volume>152</volume><issue>3</issue><spage>511</spage><epage>551</epage><pages>511-551</pages><issn>0029-599X</issn><eissn>0945-3245</eissn><abstract>We study the time-sliced thawed Gaussian propagation method, which was recently proposed for solving the time-dependent Schrödinger equation. We introduce a triplet of quadrature-based analysis, synthesis and re-initialization operators to give a rigorous mathematical formulation of the method. Further, we derive combined error bounds for the discretization of the wave packet transform and the time-propagation of the thawed Gaussian basis functions. Numerical experiments in 1D illustrate the theoretical results.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00211-022-01319-7</doi><tpages>41</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-599X |
ispartof | Numerische Mathematik, 2022-11, Vol.152 (3), p.511-551 |
issn | 0029-599X 0945-3245 |
language | eng |
recordid | cdi_proquest_journals_2729558998 |
source | Springer Nature - Complete Springer Journals |
subjects | Basis functions Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Methods in Physics Mathematics Mathematics and Statistics Numerical Analysis Numerical and Computational Physics Operators (mathematics) Quadratures Schrodinger equation Simulation Theoretical Time dependence Wave packets Wave propagation |
title | An error bound for the time-sliced thawed Gaussian propagation method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A49%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20error%20bound%20for%20the%20time-sliced%20thawed%20Gaussian%20propagation%20method&rft.jtitle=Numerische%20Mathematik&rft.au=Bergold,%20Paul&rft.date=2022-11-01&rft.volume=152&rft.issue=3&rft.spage=511&rft.epage=551&rft.pages=511-551&rft.issn=0029-599X&rft.eissn=0945-3245&rft_id=info:doi/10.1007/s00211-022-01319-7&rft_dat=%3Cproquest_cross%3E2729558998%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729558998&rft_id=info:pmid/&rfr_iscdi=true |