An error bound for the time-sliced thawed Gaussian propagation method

We study the time-sliced thawed Gaussian propagation method, which was recently proposed for solving the time-dependent Schrödinger equation. We introduce a triplet of quadrature-based analysis, synthesis and re-initialization operators to give a rigorous mathematical formulation of the method. Furt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Numerische Mathematik 2022-11, Vol.152 (3), p.511-551
Hauptverfasser: Bergold, Paul, Lasser, Caroline
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the time-sliced thawed Gaussian propagation method, which was recently proposed for solving the time-dependent Schrödinger equation. We introduce a triplet of quadrature-based analysis, synthesis and re-initialization operators to give a rigorous mathematical formulation of the method. Further, we derive combined error bounds for the discretization of the wave packet transform and the time-propagation of the thawed Gaussian basis functions. Numerical experiments in 1D illustrate the theoretical results.
ISSN:0029-599X
0945-3245
DOI:10.1007/s00211-022-01319-7