An error bound for the time-sliced thawed Gaussian propagation method
We study the time-sliced thawed Gaussian propagation method, which was recently proposed for solving the time-dependent Schrödinger equation. We introduce a triplet of quadrature-based analysis, synthesis and re-initialization operators to give a rigorous mathematical formulation of the method. Furt...
Gespeichert in:
Veröffentlicht in: | Numerische Mathematik 2022-11, Vol.152 (3), p.511-551 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the time-sliced thawed Gaussian propagation method, which was recently proposed for solving the time-dependent Schrödinger equation. We introduce a triplet of quadrature-based analysis, synthesis and re-initialization operators to give a rigorous mathematical formulation of the method. Further, we derive combined error bounds for the discretization of the wave packet transform and the time-propagation of the thawed Gaussian basis functions. Numerical experiments in 1D illustrate the theoretical results. |
---|---|
ISSN: | 0029-599X 0945-3245 |
DOI: | 10.1007/s00211-022-01319-7 |