Kinetics of Electrochemical Nanonucleation during Induced Codeposition of Iron-Group Metals with Refractory Metals (W, Mo, Re)
It is shown that the earlier discovered features of the composition and properties of electrochemical coatings obtained by induced codeposition of alloys of iron-group metals (W, Mo, Re)—such as nanocrystallinity (X-ray amorphous phase), macroscopic size effects of microhardness and corrosion resist...
Gespeichert in:
Veröffentlicht in: | Surface engineering and applied electrochemistry 2022-10, Vol.58 (5), p.429-439 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It is shown that the earlier discovered features of the composition and properties of electrochemical coatings obtained by induced codeposition of alloys of iron-group metals (W, Mo, Re)—such as nanocrystallinity (X-ray amorphous phase), macroscopic size effects of microhardness and corrosion resistance, the effect of the volume current density on the properties and composition—are a consequence of the fractality of the solutions of relevant metal complexes (e.g., citrate and gluconate) in combination with the intensive interfacial exchange. In this case, the kinetics of nano-nucleation limits the size of growing nuclei of the alloy and, as a result, water molecules participate in the formation of coatings, leading to the incorporation of oxide-hydroxide inclusions into the solid phase and hydrogenation. |
---|---|
ISSN: | 1068-3755 1934-8002 |
DOI: | 10.3103/S1068375522050027 |