Relatively Maximal Subgroups of Odd Index in Symmetric Groups

Let X be a class of finite groups which contains a group of order 2 and is closed under subgroups, homomorphic images, and extensions. We define the concept of an X-admissible diagram representing a natural number n. Associated with each n are finitely many such diagrams, and they all can be found e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and logic 2022-05, Vol.61 (2), p.104-124
Hauptverfasser: Vasil’ev, A. S., Revin, D. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124
container_issue 2
container_start_page 104
container_title Algebra and logic
container_volume 61
creator Vasil’ev, A. S.
Revin, D. O.
description Let X be a class of finite groups which contains a group of order 2 and is closed under subgroups, homomorphic images, and extensions. We define the concept of an X-admissible diagram representing a natural number n. Associated with each n are finitely many such diagrams, and they all can be found easily. Admissible diagrams representing a number n are used to uniquely parametrize conjugacy classes of maximal X-subgroups of odd index in the symmetric group Sym n , and we define the structure of such groups. As a consequence, we obtain a complete classification of submaximal X-subgroups of odd index in alternating groups.
doi_str_mv 10.1007/s10469-022-09680-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2729557622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A724353984</galeid><sourcerecordid>A724353984</sourcerecordid><originalsourceid>FETCH-LOGICAL-c267t-81b463022a0302e73730004f7eb871ad9fadab0ceb299faa862416f082f20dc73</originalsourceid><addsrcrecordid>eNp9kF9LwzAUxYMoOKdfwKeAz5m3N23TPvgwhs6BMnD6HNI2GR39M5NWtm9vtgpDEAnc5IbfuTk5hNwGMAkAxL0LIIxTBogM0jgBBmdkFESCs4QDnpMRACCLkOMluXJu49sDNiIPb7pSXfmlqz19VbuyVhVd9dnatv3W0dbQZVHQRVPoHS0butrXte5smdP5EbgmF0ZVTt_87GPy8fT4PntmL8v5YjZ9YTnGomNJkIWx94EKfNWCC-4NhEboLBGBKlKjCpVBrjNM_VklMYZBbCBBg1Dkgo_J3TB3a9vPXrtObtreNv5JiQLTKBIx4olaq0rLsjFtZ1Vely6XU4Ehj3iahJ6a_EH5Vei6zNtGm9Lf_xLgIMht65zVRm6tz8nuZQDykL4c0pf-g_IYqwQv4oPIebhZa3ty_I_qG73GhHw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2729557622</pqid></control><display><type>article</type><title>Relatively Maximal Subgroups of Odd Index in Symmetric Groups</title><source>SpringerLink Journals - AutoHoldings</source><creator>Vasil’ev, A. S. ; Revin, D. O.</creator><creatorcontrib>Vasil’ev, A. S. ; Revin, D. O.</creatorcontrib><description>Let X be a class of finite groups which contains a group of order 2 and is closed under subgroups, homomorphic images, and extensions. We define the concept of an X-admissible diagram representing a natural number n. Associated with each n are finitely many such diagrams, and they all can be found easily. Admissible diagrams representing a number n are used to uniquely parametrize conjugacy classes of maximal X-subgroups of odd index in the symmetric group Sym n , and we define the structure of such groups. As a consequence, we obtain a complete classification of submaximal X-subgroups of odd index in alternating groups.</description><identifier>ISSN: 0002-5232</identifier><identifier>EISSN: 1573-8302</identifier><identifier>DOI: 10.1007/s10469-022-09680-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algebra ; Group theory ; Mathematical Logic and Foundations ; Mathematical research ; Mathematics ; Mathematics and Statistics ; Subgroups ; Symmetric functions</subject><ispartof>Algebra and logic, 2022-05, Vol.61 (2), p.104-124</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><rights>COPYRIGHT 2022 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c267t-81b463022a0302e73730004f7eb871ad9fadab0ceb299faa862416f082f20dc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10469-022-09680-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10469-022-09680-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Vasil’ev, A. S.</creatorcontrib><creatorcontrib>Revin, D. O.</creatorcontrib><title>Relatively Maximal Subgroups of Odd Index in Symmetric Groups</title><title>Algebra and logic</title><addtitle>Algebra Logic</addtitle><description>Let X be a class of finite groups which contains a group of order 2 and is closed under subgroups, homomorphic images, and extensions. We define the concept of an X-admissible diagram representing a natural number n. Associated with each n are finitely many such diagrams, and they all can be found easily. Admissible diagrams representing a number n are used to uniquely parametrize conjugacy classes of maximal X-subgroups of odd index in the symmetric group Sym n , and we define the structure of such groups. As a consequence, we obtain a complete classification of submaximal X-subgroups of odd index in alternating groups.</description><subject>Algebra</subject><subject>Group theory</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematical research</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Subgroups</subject><subject>Symmetric functions</subject><issn>0002-5232</issn><issn>1573-8302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kF9LwzAUxYMoOKdfwKeAz5m3N23TPvgwhs6BMnD6HNI2GR39M5NWtm9vtgpDEAnc5IbfuTk5hNwGMAkAxL0LIIxTBogM0jgBBmdkFESCs4QDnpMRACCLkOMluXJu49sDNiIPb7pSXfmlqz19VbuyVhVd9dnatv3W0dbQZVHQRVPoHS0butrXte5smdP5EbgmF0ZVTt_87GPy8fT4PntmL8v5YjZ9YTnGomNJkIWx94EKfNWCC-4NhEboLBGBKlKjCpVBrjNM_VklMYZBbCBBg1Dkgo_J3TB3a9vPXrtObtreNv5JiQLTKBIx4olaq0rLsjFtZ1Vely6XU4Ehj3iahJ6a_EH5Vei6zNtGm9Lf_xLgIMht65zVRm6tz8nuZQDykL4c0pf-g_IYqwQv4oPIebhZa3ty_I_qG73GhHw</recordid><startdate>20220501</startdate><enddate>20220501</enddate><creator>Vasil’ev, A. S.</creator><creator>Revin, D. O.</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220501</creationdate><title>Relatively Maximal Subgroups of Odd Index in Symmetric Groups</title><author>Vasil’ev, A. S. ; Revin, D. O.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c267t-81b463022a0302e73730004f7eb871ad9fadab0ceb299faa862416f082f20dc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algebra</topic><topic>Group theory</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematical research</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Subgroups</topic><topic>Symmetric functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasil’ev, A. S.</creatorcontrib><creatorcontrib>Revin, D. O.</creatorcontrib><collection>CrossRef</collection><jtitle>Algebra and logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vasil’ev, A. S.</au><au>Revin, D. O.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relatively Maximal Subgroups of Odd Index in Symmetric Groups</atitle><jtitle>Algebra and logic</jtitle><stitle>Algebra Logic</stitle><date>2022-05-01</date><risdate>2022</risdate><volume>61</volume><issue>2</issue><spage>104</spage><epage>124</epage><pages>104-124</pages><issn>0002-5232</issn><eissn>1573-8302</eissn><abstract>Let X be a class of finite groups which contains a group of order 2 and is closed under subgroups, homomorphic images, and extensions. We define the concept of an X-admissible diagram representing a natural number n. Associated with each n are finitely many such diagrams, and they all can be found easily. Admissible diagrams representing a number n are used to uniquely parametrize conjugacy classes of maximal X-subgroups of odd index in the symmetric group Sym n , and we define the structure of such groups. As a consequence, we obtain a complete classification of submaximal X-subgroups of odd index in alternating groups.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10469-022-09680-0</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0002-5232
ispartof Algebra and logic, 2022-05, Vol.61 (2), p.104-124
issn 0002-5232
1573-8302
language eng
recordid cdi_proquest_journals_2729557622
source SpringerLink Journals - AutoHoldings
subjects Algebra
Group theory
Mathematical Logic and Foundations
Mathematical research
Mathematics
Mathematics and Statistics
Subgroups
Symmetric functions
title Relatively Maximal Subgroups of Odd Index in Symmetric Groups
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T19%3A20%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relatively%20Maximal%20Subgroups%20of%20Odd%20Index%20in%20Symmetric%20Groups&rft.jtitle=Algebra%20and%20logic&rft.au=Vasil%E2%80%99ev,%20A.%20S.&rft.date=2022-05-01&rft.volume=61&rft.issue=2&rft.spage=104&rft.epage=124&rft.pages=104-124&rft.issn=0002-5232&rft.eissn=1573-8302&rft_id=info:doi/10.1007/s10469-022-09680-0&rft_dat=%3Cgale_proqu%3EA724353984%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2729557622&rft_id=info:pmid/&rft_galeid=A724353984&rfr_iscdi=true