Relatively Maximal Subgroups of Odd Index in Symmetric Groups

Let X be a class of finite groups which contains a group of order 2 and is closed under subgroups, homomorphic images, and extensions. We define the concept of an X-admissible diagram representing a natural number n. Associated with each n are finitely many such diagrams, and they all can be found e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Algebra and logic 2022-05, Vol.61 (2), p.104-124
Hauptverfasser: Vasil’ev, A. S., Revin, D. O.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let X be a class of finite groups which contains a group of order 2 and is closed under subgroups, homomorphic images, and extensions. We define the concept of an X-admissible diagram representing a natural number n. Associated with each n are finitely many such diagrams, and they all can be found easily. Admissible diagrams representing a number n are used to uniquely parametrize conjugacy classes of maximal X-subgroups of odd index in the symmetric group Sym n , and we define the structure of such groups. As a consequence, we obtain a complete classification of submaximal X-subgroups of odd index in alternating groups.
ISSN:0002-5232
1573-8302
DOI:10.1007/s10469-022-09680-0