Symmetric and Nonsymmetric Macdonald Polynomials via a Path Model with a Pseudo-crystal Structure

In this paper we derive a counterpart of the well-known Ram-Yip formula for symmetric and nonsymmetric Macdonald polynomials of arbitrary type. Our new formula is in terms of a generalization of the Lakshmibai-Seshadri paths (originating in standard monomial theory), which we call pseudo-quantum Lak...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-10
Hauptverfasser: Lenart, Cristian, Naito, Satoshi, Nomoto, Fumihiko, Sagaki, Daisuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we derive a counterpart of the well-known Ram-Yip formula for symmetric and nonsymmetric Macdonald polynomials of arbitrary type. Our new formula is in terms of a generalization of the Lakshmibai-Seshadri paths (originating in standard monomial theory), which we call pseudo-quantum Lakshmibai-Seshadri (LS) paths. This model carries less information than the alcove walks in the Ram-Yip formula, and it is therefore more efficient. Furthermore, we construct a connected pseudo-crystal structure on the pseudo-quantum LS paths, which is expected to lead to a simple Littlewood-Richardson rule for multiplying Macdonald polynomials. By contrast with the Kashiwara crystals, our pseudo-crystals have edges labeled by arbitrary roots.
ISSN:2331-8422