Spatial Variation of Soil Organic Carbon from Bamen Bay Mangrove in Southern China

Mangrove forests are large pools of soil organic carbon (SOC) found across the world, and play a vital role in global carbon (C) cycling. In this study, to investigate the effects of spatial factors on SOC in mangrove forests, soil samples at different depth layers from upper estuary (UE), lower est...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water (Basel) 2022-10, Vol.14 (20), p.3278
Hauptverfasser: Wen, Wanyu, Zhu, Yaojun, Guo, Jia, Pan, Xu, Li, Jing, Guo, Yanru, Guo, Julan, Wu, Gaojie, Wang, Yuhang, Gong, Minghao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Mangrove forests are large pools of soil organic carbon (SOC) found across the world, and play a vital role in global carbon (C) cycling. In this study, to investigate the effects of spatial factors on SOC in mangrove forests, soil samples at different depth layers from upper estuary (UE), lower estuary (LE), and tidal inlet (TI) in the Qinglangang mangrove forest in Southern China were collected and the differences in SOC among the layers and geomorphological settings were compared. The mean SOC content showed a pattern of LE (4.63 ± 1.28%) > UE (2.94 ± 0.73%) > TI (1.44 ± 0.33%). SOC content and storage decreased with soil depth in TI, but increased in UE. The total SOC storages (0–80 cm) of sites TU, UE, and LE, were 104.41 ± 16.63, 207.14 ± 44.83, and 228.78 ± 19.37 Mg/ha, respectively. The results suggested that top- and subsoil organic C content and storage were largely dependent on their specific location, which underwent different river-sea interactions and human activities. The SOC of the soil profile varied at different sites, implying that the current C storage of mangrove ecosystems can be accurately estimated by quantifying the C of sediments at sites.
ISSN:2073-4441
2073-4441
DOI:10.3390/w14203278