Impacted Application of Water-Hyacinth-Derived Biochar and Organic Manures on Soil Properties and Barley Growth

The biochar application can improve the physiochemical properties of both sandy and clayey loam soils and is considered a potential adaptation tool toward climate change. Therefore, the current study is novel in combining water-hyacinth-derived biochar with organic manures as a suggested effective w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-10, Vol.14 (20), p.13096
Hauptverfasser: Hammam, Amr A, Mohamed, Elsayed Said, El-Namas, Ashraf E, Abd-Elmabod, Sameh Kotb, Badr Eldin, Rasha M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The biochar application can improve the physiochemical properties of both sandy and clayey loam soils and is considered a potential adaptation tool toward climate change. Therefore, the current study is novel in combining water-hyacinth-derived biochar with organic manures as a suggested effective way of treating the soil with biochar under arid and semiarid conditions. Water hyacinth weeds were slow pyrolyzed at a temperature of 300 °C, which resulted in nonalkaline biochar with a pH value of 6.31, which is suitable for alkaline soils. A pot experiment was established to study the impact of the solo application of nonalkaline water-hyacinth-derived biochar (WHB) and its combined application with farmyard (WHB/FM) and poultry manure (WHB/PM) at a rate of 1.5 and 3%, respectively, on some chemical and physical properties of sandy and clay loam soils and some barley’s growth parameters. WHB, WHB/FM, and WHB/PM significantly affected the soil pH at different application rates (1.5 and 3%) in sandy soil. A considerable alteration in water-stable aggregates (WSA), dispersion ratio (DR), available water content (AWC), and cation ratio of soil structural stability (CROSS) index resulted from combining manures (FM and PM) with biochar better than the solo application of biochar. WHB/PM treatments had a superior effect in improving barley’s growth. Relative increases were by 37.3 and 11.0% in plant height and by 61.6 and 28.5% in the dry matter in sandy and clayey loam soils, respectively. Under the conditions of this study, we can conclude that treating the soil with WHB/PM at a rate of 1.5 and 3% is the most effective application. The current study may have a vital role in Egyptian agriculture sustainability by enhancing the soil characteristics of the old agricultural and the newly reclaimed lands.
ISSN:2071-1050
2071-1050
DOI:10.3390/su142013096