The Impact of V2G Charging/Discharging Strategy on the Microgrid Environment Considering Stochastic Methods

Although electric vehicles (EVs) play a vital role in realizing remarkable features, however, the integration of a huge number of EVs leads to grid congestion as well. As a result, uncontrolled charging might give rise to undervoltage and complex congestion in the electric grid. The reasons for the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-10, Vol.14 (20), p.13211
Hauptverfasser: Iqbal, Sheeraz, Habib, Salman, Ali, Muhammad, Shafiq, Aqib, ur Rehman, Anis, Ahmed, Emad M, Khurshaid, Tahir, Kamel, Salah
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Although electric vehicles (EVs) play a vital role in realizing remarkable features, however, the integration of a huge number of EVs leads to grid congestion as well. As a result, uncontrolled charging might give rise to undervoltage and complex congestion in the electric grid. The reasons for the uncontrolled charging of EVs have been investigated in the recent past to mitigate the effects thereof. It is very challenging to achieve controlled charging due to different constraints at the customer end; therefore, it is better to take the benefits of power prediction schemes for the charging and discharging of EVs. The power prediction scheme is based on a practical power forecast system that exploits the needs of various patterns, and the current research focuses on considering users’ demands. The primary objective of this study is to develop an effective and efficient coordination system for the charging and discharging of EVs by exploiting a smart algorithm that intelligently tackles the possible difficulties to attain optimum power requirements. In this context, a model is proposed based on stochastic methods for analyzing the impact of vehicle-to-grid (V2G) charging and discharging in the microgrid environment. A Markov model is used to simulate the use of EVs. This method works well with the Markov model because of its ability to adjust to random changes. When considering an EV, its erratic travel patterns suggest a string of events that resemble a stochastic process. The proposed model ensures that high power requirements are met during peak hours in a cost-effective manner. In simpler words, the promising features of the proposed scheme are to meet electricity/power demands, monitoring and the efficient forecasting of power. The outcomes revealed an effective power system, EV scheduling, and power supply without compromising the electric vehicle’s presentation of the EV owner’s tour schedule. In terms of comprehensiveness, the developed algorithm exhibits a significant improvement.
ISSN:2071-1050
2071-1050
DOI:10.3390/su142013211