Modelling Cosmic Springs with Finsler and Generalised Finsler Geometries

We show that the equations of motion governing the dynamics of strings in a compact internal space can be written as dispersion relations, with a local speed that depends on the velocity and curvature of the string in the large dimensions. From a (3+1)-dimensional perspective these can be viewed as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Symmetry (Basel) 2022-10, Vol.14 (10), p.2166
1. Verfasser: Lake, Matthew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the equations of motion governing the dynamics of strings in a compact internal space can be written as dispersion relations, with a local speed that depends on the velocity and curvature of the string in the large dimensions. From a (3+1)-dimensional perspective these can be viewed as dispersion relations for waves propagating in the string interior and are analogous to those for current-carrying topological defects. This allows us to construct a unified framework with which to study and interpret the internal structure of various field-theoretic and fundamental string species, in a simple physically intuitive coordinate system, without the need for dimensional reduction or approximate effective actions. This, in turn, allows us to identify the precise conditions under which higher-dimensional strings and current-carrying defects are observationally indistinguishable, for macroscopic observers. Our approach naturally incorporates the description of so-called ‘cosmic springs’, whose dynamics are expressed in terms of an effective Finsler geometry, for circular loops, or generalised Finsler geometry, for non-circular configurations. This demonstrates the importance of these novel geometric structures and their utility in modelling complex physical phenomena in cosmology and astrophysics.
ISSN:2073-8994
2073-8994
DOI:10.3390/sym14102166