Pyrolysis Temperature and Application Rate of Sugarcane Straw Biochar Influence Sorption and Desorption of Metribuzin and Soil Chemical Properties
Pyrolysis temperature and application rate of biochar to soil can influence herbicide behavior and soil fertility. The objective was to investigate the effect of soil amendments with application rates of sugarcane straw biochar, produced at different pyrolysis temperatures, on the sorption–desorptio...
Gespeichert in:
Veröffentlicht in: | Processes 2022-10, Vol.10 (10), p.1924 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Pyrolysis temperature and application rate of biochar to soil can influence herbicide behavior and soil fertility. The objective was to investigate the effect of soil amendments with application rates of sugarcane straw biochar, produced at different pyrolysis temperatures, on the sorption–desorption of metribuzin in soil. The analysis was performed using high-performance liquid chromatography (HPLC). The treatments were three pyrolysis temperatures (BC350, BC550 and BC750 °C) and seven application rates (0, 0.1, 0.5, 1, 1.5, 5 and 10% w w−1). Amended soil with different application rates decreased H + Al and increased pH, OC, P, K, Ca, Mg, Fe, Mn, CEC and BS contents. Kf values of sorption and desorption of metribuzin were 1.42 and 0.78 mg(1−1/n) L1/n Kg−1, respectively, in the unamended soil. Application rates < 1% of biochar sorbed ~23% and desorbed ~15% of metribuzin, similar to unamended soil, for all pyrolysis temperatures. Amended soil with 10% of BC350, BC550 and BC750 sorbed 63.8, 75.5 and 89.4% and desorbed 8.3, 5.8 and 3.7% of metribuzin, respectively. High pyrolysis temperature and application rates of sugarcane straw biochar show an ability to immobilize metribuzin and improve soil fertility, which may influence the effectiveness in weed control. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr10101924 |