The Optimization of a First-Stage Liquid-Sealing Impeller Structure for a Turbopump Based on Response Surface Methodology

This study investigated the sealing performance of the multistage liquid-sealing impellers of a turbopump. To achieve this purpose, the influence of each structural parameter in the impeller on the pressurization coefficient φ2 and the leakage flow rate Q was analyzed based on response surface metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2022-10, Vol.10 (10), p.1999
Hauptverfasser: Liu, Qiong, Zhuang, Suguo, Bao, Haifeng, He, Zhoufeng, Wang, Kai, Liu, Houlin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 10
container_start_page 1999
container_title Processes
container_volume 10
creator Liu, Qiong
Zhuang, Suguo
Bao, Haifeng
He, Zhoufeng
Wang, Kai
Liu, Houlin
description This study investigated the sealing performance of the multistage liquid-sealing impellers of a turbopump. To achieve this purpose, the influence of each structural parameter in the impeller on the pressurization coefficient φ2 and the leakage flow rate Q was analyzed based on response surface methodology, taking the maximum pressurization coefficient φ2 and the minimum leakage flow rate Q as the optimization objectives. We obtained satisfactory ranges for parameters φ2 and Q. A set of parameter combinations was selected as the optimization scheme using the Box–Behnken method for the optimal solution design. The numerical simulation results show that to keep φ2 and Q in the better range, the value ranges of groove width b, groove depth h and groove number z should be (12.8–14 mm), (4.5–5.6 mm) and (23.5–28), respectively. Compared with the original model, the optimized version has an average increase of about 2.5% in pressurization coefficient φ2 at each rotation speed, an average of about 8.2% reduction in the leakage flow rate Q in the leakage state and an average increase in the reverse flow rate Q by about 6.7% in the negative pressure sealing state, indicating better sealing. By comparing pressure data at the experimental monitoring points, the proposed method was verified to have a high degree of confidence.
doi_str_mv 10.3390/pr10101999
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2728522415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A744993054</galeid><sourcerecordid>A744993054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c334t-70bec3af2d3d21469c0914e059eb6aa1d5d1be0971e552ceb236e76c0e3497d33</originalsourceid><addsrcrecordid>eNpNUU1Lw0AQDaJgqb34Cxa8Can7kY_usRarhUrB1HPY7E7SLUk23d0c6q93pYLOO8wwvPdmhomie4LnjHH8NFiCAzjnV9GEUprHPCf59b_6Npo5d8QhOGGLNJtE5_0B0G7wutNfwmvTI1MjgdbaOh8XXjSAtvo0ahUXIFrdN2jTDdC2YFHh7Sj9aAHVxgbNfrSVGcZuQM_CgULB6wPcYHoHqBhtLSSgd_AHo0xrmvNddFOL1sHsN0-jz_XLfvUWb3evm9VyG0vGEh_nuALJRE0VU5QkGZdh9wRwyqHKhCAqVaQCHK6DNKUSKsoyyDOJgSU8V4xNo4eL72DNaQTny6MZbR9GljSni5TShKSBNb-wGtFCqfvaeCtkgIJOS9NDrUN_mScJ5wynSRA8XgTSGucs1OVgdSfsuSS4_HlH-fcO9g1BSn1L</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2728522415</pqid></control><display><type>article</type><title>The Optimization of a First-Stage Liquid-Sealing Impeller Structure for a Turbopump Based on Response Surface Methodology</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Qiong ; Zhuang, Suguo ; Bao, Haifeng ; He, Zhoufeng ; Wang, Kai ; Liu, Houlin</creator><creatorcontrib>Liu, Qiong ; Zhuang, Suguo ; Bao, Haifeng ; He, Zhoufeng ; Wang, Kai ; Liu, Houlin</creatorcontrib><description>This study investigated the sealing performance of the multistage liquid-sealing impellers of a turbopump. To achieve this purpose, the influence of each structural parameter in the impeller on the pressurization coefficient φ2 and the leakage flow rate Q was analyzed based on response surface methodology, taking the maximum pressurization coefficient φ2 and the minimum leakage flow rate Q as the optimization objectives. We obtained satisfactory ranges for parameters φ2 and Q. A set of parameter combinations was selected as the optimization scheme using the Box–Behnken method for the optimal solution design. The numerical simulation results show that to keep φ2 and Q in the better range, the value ranges of groove width b, groove depth h and groove number z should be (12.8–14 mm), (4.5–5.6 mm) and (23.5–28), respectively. Compared with the original model, the optimized version has an average increase of about 2.5% in pressurization coefficient φ2 at each rotation speed, an average of about 8.2% reduction in the leakage flow rate Q in the leakage state and an average increase in the reverse flow rate Q by about 6.7% in the negative pressure sealing state, indicating better sealing. By comparing pressure data at the experimental monitoring points, the proposed method was verified to have a high degree of confidence.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr10101999</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Artificial satellites ; Automation ; Coefficients ; Design of experiments ; Engines ; Flow velocity ; Fluid dynamics ; Grooves ; Impellers ; Leakage ; Mathematical models ; Methods ; Optimization ; Parameters ; Pressure distribution ; Pressurization ; Response surface methodology ; Reversed flow ; Sealing ; Seals ; Software ; Turbine pumps ; Velocity</subject><ispartof>Processes, 2022-10, Vol.10 (10), p.1999</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c334t-70bec3af2d3d21469c0914e059eb6aa1d5d1be0971e552ceb236e76c0e3497d33</citedby><cites>FETCH-LOGICAL-c334t-70bec3af2d3d21469c0914e059eb6aa1d5d1be0971e552ceb236e76c0e3497d33</cites><orcidid>0000-0002-2892-2117</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Liu, Qiong</creatorcontrib><creatorcontrib>Zhuang, Suguo</creatorcontrib><creatorcontrib>Bao, Haifeng</creatorcontrib><creatorcontrib>He, Zhoufeng</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Liu, Houlin</creatorcontrib><title>The Optimization of a First-Stage Liquid-Sealing Impeller Structure for a Turbopump Based on Response Surface Methodology</title><title>Processes</title><description>This study investigated the sealing performance of the multistage liquid-sealing impellers of a turbopump. To achieve this purpose, the influence of each structural parameter in the impeller on the pressurization coefficient φ2 and the leakage flow rate Q was analyzed based on response surface methodology, taking the maximum pressurization coefficient φ2 and the minimum leakage flow rate Q as the optimization objectives. We obtained satisfactory ranges for parameters φ2 and Q. A set of parameter combinations was selected as the optimization scheme using the Box–Behnken method for the optimal solution design. The numerical simulation results show that to keep φ2 and Q in the better range, the value ranges of groove width b, groove depth h and groove number z should be (12.8–14 mm), (4.5–5.6 mm) and (23.5–28), respectively. Compared with the original model, the optimized version has an average increase of about 2.5% in pressurization coefficient φ2 at each rotation speed, an average of about 8.2% reduction in the leakage flow rate Q in the leakage state and an average increase in the reverse flow rate Q by about 6.7% in the negative pressure sealing state, indicating better sealing. By comparing pressure data at the experimental monitoring points, the proposed method was verified to have a high degree of confidence.</description><subject>Artificial satellites</subject><subject>Automation</subject><subject>Coefficients</subject><subject>Design of experiments</subject><subject>Engines</subject><subject>Flow velocity</subject><subject>Fluid dynamics</subject><subject>Grooves</subject><subject>Impellers</subject><subject>Leakage</subject><subject>Mathematical models</subject><subject>Methods</subject><subject>Optimization</subject><subject>Parameters</subject><subject>Pressure distribution</subject><subject>Pressurization</subject><subject>Response surface methodology</subject><subject>Reversed flow</subject><subject>Sealing</subject><subject>Seals</subject><subject>Software</subject><subject>Turbine pumps</subject><subject>Velocity</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNUU1Lw0AQDaJgqb34Cxa8Can7kY_usRarhUrB1HPY7E7SLUk23d0c6q93pYLOO8wwvPdmhomie4LnjHH8NFiCAzjnV9GEUprHPCf59b_6Npo5d8QhOGGLNJtE5_0B0G7wutNfwmvTI1MjgdbaOh8XXjSAtvo0ahUXIFrdN2jTDdC2YFHh7Sj9aAHVxgbNfrSVGcZuQM_CgULB6wPcYHoHqBhtLSSgd_AHo0xrmvNddFOL1sHsN0-jz_XLfvUWb3evm9VyG0vGEh_nuALJRE0VU5QkGZdh9wRwyqHKhCAqVaQCHK6DNKUSKsoyyDOJgSU8V4xNo4eL72DNaQTny6MZbR9GljSni5TShKSBNb-wGtFCqfvaeCtkgIJOS9NDrUN_mScJ5wynSRA8XgTSGucs1OVgdSfsuSS4_HlH-fcO9g1BSn1L</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Liu, Qiong</creator><creator>Zhuang, Suguo</creator><creator>Bao, Haifeng</creator><creator>He, Zhoufeng</creator><creator>Wang, Kai</creator><creator>Liu, Houlin</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-2892-2117</orcidid></search><sort><creationdate>20221001</creationdate><title>The Optimization of a First-Stage Liquid-Sealing Impeller Structure for a Turbopump Based on Response Surface Methodology</title><author>Liu, Qiong ; Zhuang, Suguo ; Bao, Haifeng ; He, Zhoufeng ; Wang, Kai ; Liu, Houlin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c334t-70bec3af2d3d21469c0914e059eb6aa1d5d1be0971e552ceb236e76c0e3497d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Artificial satellites</topic><topic>Automation</topic><topic>Coefficients</topic><topic>Design of experiments</topic><topic>Engines</topic><topic>Flow velocity</topic><topic>Fluid dynamics</topic><topic>Grooves</topic><topic>Impellers</topic><topic>Leakage</topic><topic>Mathematical models</topic><topic>Methods</topic><topic>Optimization</topic><topic>Parameters</topic><topic>Pressure distribution</topic><topic>Pressurization</topic><topic>Response surface methodology</topic><topic>Reversed flow</topic><topic>Sealing</topic><topic>Seals</topic><topic>Software</topic><topic>Turbine pumps</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qiong</creatorcontrib><creatorcontrib>Zhuang, Suguo</creatorcontrib><creatorcontrib>Bao, Haifeng</creatorcontrib><creatorcontrib>He, Zhoufeng</creatorcontrib><creatorcontrib>Wang, Kai</creatorcontrib><creatorcontrib>Liu, Houlin</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qiong</au><au>Zhuang, Suguo</au><au>Bao, Haifeng</au><au>He, Zhoufeng</au><au>Wang, Kai</au><au>Liu, Houlin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Optimization of a First-Stage Liquid-Sealing Impeller Structure for a Turbopump Based on Response Surface Methodology</atitle><jtitle>Processes</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>10</volume><issue>10</issue><spage>1999</spage><pages>1999-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>This study investigated the sealing performance of the multistage liquid-sealing impellers of a turbopump. To achieve this purpose, the influence of each structural parameter in the impeller on the pressurization coefficient φ2 and the leakage flow rate Q was analyzed based on response surface methodology, taking the maximum pressurization coefficient φ2 and the minimum leakage flow rate Q as the optimization objectives. We obtained satisfactory ranges for parameters φ2 and Q. A set of parameter combinations was selected as the optimization scheme using the Box–Behnken method for the optimal solution design. The numerical simulation results show that to keep φ2 and Q in the better range, the value ranges of groove width b, groove depth h and groove number z should be (12.8–14 mm), (4.5–5.6 mm) and (23.5–28), respectively. Compared with the original model, the optimized version has an average increase of about 2.5% in pressurization coefficient φ2 at each rotation speed, an average of about 8.2% reduction in the leakage flow rate Q in the leakage state and an average increase in the reverse flow rate Q by about 6.7% in the negative pressure sealing state, indicating better sealing. By comparing pressure data at the experimental monitoring points, the proposed method was verified to have a high degree of confidence.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr10101999</doi><orcidid>https://orcid.org/0000-0002-2892-2117</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2022-10, Vol.10 (10), p.1999
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_2728522415
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals
subjects Artificial satellites
Automation
Coefficients
Design of experiments
Engines
Flow velocity
Fluid dynamics
Grooves
Impellers
Leakage
Mathematical models
Methods
Optimization
Parameters
Pressure distribution
Pressurization
Response surface methodology
Reversed flow
Sealing
Seals
Software
Turbine pumps
Velocity
title The Optimization of a First-Stage Liquid-Sealing Impeller Structure for a Turbopump Based on Response Surface Methodology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T13%3A42%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Optimization%20of%20a%20First-Stage%20Liquid-Sealing%20Impeller%20Structure%20for%20a%20Turbopump%20Based%20on%20Response%20Surface%20Methodology&rft.jtitle=Processes&rft.au=Liu,%20Qiong&rft.date=2022-10-01&rft.volume=10&rft.issue=10&rft.spage=1999&rft.pages=1999-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr10101999&rft_dat=%3Cgale_proqu%3EA744993054%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2728522415&rft_id=info:pmid/&rft_galeid=A744993054&rfr_iscdi=true