Zero-Waste Watermelon Production through Nontraditional Rind Flour: Multiobjective Optimization of the Fabrication Process

Watermelon is a fruit produced around the world. Unfortunately, about half of it—the rind—is usually discarded as waste. To transform such waste into a useful product like flour, a thermal treatment is needed. The drying temperature for the rind that produces flour with the best characteristics is m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2022-10, Vol.10 (10), p.1984
Hauptverfasser: Capossio, Juan Pablo, Fabani, María Paula, Román, María Celia, Zhang, Xin, Baeyens, Jan, Rodriguez, Rosa, Mazza, Germán
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Watermelon is a fruit produced around the world. Unfortunately, about half of it—the rind—is usually discarded as waste. To transform such waste into a useful product like flour, a thermal treatment is needed. The drying temperature for the rind that produces flour with the best characteristics is most important. A multiobjective optimization (MOO) procedure was applied to define the optimum drying temperature for the rind flour fabrication to be used in bakery products. A neural network model of the fabrication process was developed with the drying temperature as input and five process indicators as outputs. The group of process indicators comprised acidity, pH, water-holding capacity (WHC), oil-holding capacity (OHC), and batch time. Those indicators represent conflicting objectives that are to be balanced by the MOO procedure using the weighted distance method. The MOO process showed that the temperature interval from 67.3 °C to 73.1 °C holds the compromise solutions for the conflicting indicators based on the stakeholder’s preferences. Optimum indicator were 0.12–0.19 g malic acid/100 g dwb (acidity), 5.7–5.8 (pH), 8.93–9.08 g H2O/g dwb (WHC), 1.46–1.56 g oil/g dwb (OHC), and 128–139 min (drying time).
ISSN:2227-9717
2227-9717
DOI:10.3390/pr10101984