The nonlinear singular Burgers equation with small parameter and p-regularity theory
In this paper, we study a solutions existence problem of the following nonlinear singular Burgers equation F ( u , ε ) = u t ′ - u xx ′ ′ + u u x ′ + ε u 2 = f ( x , t ) , where F : Ω → C ( [ 0 , π ] × [ 0 , ∞ ) ) , Ω = C 2 ( [ 0 , π ] × [ 0 , ∞ ) ) × R , u ( 0 , t ) = u ( π , t ) = 0 , u ( x , 0 )...
Gespeichert in:
Veröffentlicht in: | Letters in mathematical physics 2022-10, Vol.112 (5), Article 108 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study a solutions existence problem of the following nonlinear singular Burgers equation
F
(
u
,
ε
)
=
u
t
′
-
u
xx
′
′
+
u
u
x
′
+
ε
u
2
=
f
(
x
,
t
)
,
where
F
:
Ω
→
C
(
[
0
,
π
]
×
[
0
,
∞
)
)
,
Ω
=
C
2
(
[
0
,
π
]
×
[
0
,
∞
)
)
×
R
,
u
(
0
,
t
)
=
u
(
π
,
t
)
=
0
,
u
(
x
,
0
)
=
g
(
x
)
, and
F
,
f
(
x
,
t
),
g
(
x
) will be describe in the text. The first derivative of operator
F
at the solution point is degenerate. By virtue of
p
-regularity theory and Michael selection theorem, we prove the existence of continuous solution for this nonlinear problem. |
---|---|
ISSN: | 0377-9017 1573-0530 |
DOI: | 10.1007/s11005-022-01601-7 |