The nonlinear singular Burgers equation with small parameter and p-regularity theory

In this paper, we study a solutions existence problem of the following nonlinear singular Burgers equation F ( u , ε ) = u t ′ - u xx ′ ′ + u u x ′ + ε u 2 = f ( x , t ) , where F : Ω → C ( [ 0 , π ] × [ 0 , ∞ ) ) , Ω = C 2 ( [ 0 , π ] × [ 0 , ∞ ) ) × R , u ( 0 , t ) = u ( π , t ) = 0 , u ( x , 0 )...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Letters in mathematical physics 2022-10, Vol.112 (5), Article 108
Hauptverfasser: Medak, Beata, Tret’yakov, Alexey A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study a solutions existence problem of the following nonlinear singular Burgers equation F ( u , ε ) = u t ′ - u xx ′ ′ + u u x ′ + ε u 2 = f ( x , t ) , where F : Ω → C ( [ 0 , π ] × [ 0 , ∞ ) ) , Ω = C 2 ( [ 0 , π ] × [ 0 , ∞ ) ) × R , u ( 0 , t ) = u ( π , t ) = 0 , u ( x , 0 ) = g ( x ) , and F , f ( x ,  t ), g ( x ) will be describe in the text. The first derivative of operator F at the solution point is degenerate. By virtue of p -regularity theory and Michael selection theorem, we prove the existence of continuous solution for this nonlinear problem.
ISSN:0377-9017
1573-0530
DOI:10.1007/s11005-022-01601-7