Revisiting the Product of Random Variables
For a large class of distribution functions we study properties of the product of random variables X and Y . We take into account the dependency structure between X and Y by making assumptions about the asymptotic equality P( X > x | Y = y ) ~ h ( y )P( X > x ) as x → ∞, uniformly for y in the...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2022-10, Vol.267 (2), p.180-195 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a large class of distribution functions we study properties of the product of random variables
X
and
Y
. We take into account the dependency structure between
X
and
Y
by making assumptions about the asymptotic equality P(
X
>
x
|
Y
=
y
) ~
h
(
y
)P(
X
>
x
) as
x
→ ∞, uniformly for
y
in the range of
Y
. As particular consequences, some well-known results concerning the product of random variables are reviewed, among them the Breiman’s theorem. An application is made in the case where the dependence between
X
and
Y
is characterized by asymptotic conditions on their copula. |
---|---|
ISSN: | 1072-3374 1573-8795 |
DOI: | 10.1007/s10958-022-06123-0 |