Revisiting the Product of Random Variables

For a large class of distribution functions we study properties of the product of random variables X and Y . We take into account the dependency structure between X and Y by making assumptions about the asymptotic equality P( X > x | Y = y ) ~ h ( y )P( X > x ) as x → ∞, uniformly for y in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2022-10, Vol.267 (2), p.180-195
Hauptverfasser: Cadena, M., Omey, E., Vesilo, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a large class of distribution functions we study properties of the product of random variables X and Y . We take into account the dependency structure between X and Y by making assumptions about the asymptotic equality P( X > x | Y = y ) ~ h ( y )P( X > x ) as x → ∞, uniformly for y in the range of Y . As particular consequences, some well-known results concerning the product of random variables are reviewed, among them the Breiman’s theorem. An application is made in the case where the dependence between X and Y is characterized by asymptotic conditions on their copula.
ISSN:1072-3374
1573-8795
DOI:10.1007/s10958-022-06123-0