Electrical Characterization of Through-Silicon-via-Based Coaxial Line for High-Frequency 3D Integration (Invited Paper)

Through-silicon-via (TSV)-based coaxial line techniques can reduce the high-frequency loss due to the low resistivity in the silicon substrate and thus can improve the efficiency of vertical signal transmission. Moreover, a TSV-based coaxial structure allows easily realizing the impedance matching i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2022-10, Vol.11 (20), p.3417
Hauptverfasser: Zhao, Zhibo, Li, Jinkai, Yuan, Haoyun, Wang, Zeyu, Gugliandolo, Giovanni, Donato, Nicola, Crupi, Giovanni, Si, Liming, Bao, Xiue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Through-silicon-via (TSV)-based coaxial line techniques can reduce the high-frequency loss due to the low resistivity in the silicon substrate and thus can improve the efficiency of vertical signal transmission. Moreover, a TSV-based coaxial structure allows easily realizing the impedance matching in RF/microwave systems for excellent electrical performance. However, due to the limitations of existing available dielectric materials and the difficulties and challenges in the manufacturing process, ideal coaxial TSVs are not easy to obtain, and thus, the achieved electrical performance might be unexpected. In order to increase the flexibility of designing and manufacturing TSV-based coaxial structures and to better evaluate the fabricated devices, modeling and analysis theories of the corresponding high-frequency electrical performance are proposed in the paper. The theories are finally well validated using the finite-element simulation results, hereby providing guiding rules for selecting materials and improving manufacturing techniques in the practical process, so as to optimize the high-frequency performance of the TSV structures.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics11203417