Unfocused notes on the Markoff equation and T-Singularities

We consider minimal resolutions of the singularities for weighted projective planes of type \(\mathbb{P}(e^2, f^2, g^2)\), where \(e, f, g\) satisfy the Markoff equation \( e^2 + f^2 + g^2 = 3efg\). We give a complete classification of such resolutions in terms of continued fractions similar to clas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-10
1. Verfasser: Perling, Markus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider minimal resolutions of the singularities for weighted projective planes of type \(\mathbb{P}(e^2, f^2, g^2)\), where \(e, f, g\) satisfy the Markoff equation \( e^2 + f^2 + g^2 = 3efg\). We give a complete classification of such resolutions in terms of continued fractions similar to classical work of Frobenius. In particular, we investigate the behaviour of resolutions under mutations and describe a Cantor set emerging as limits of continued fractions.
ISSN:2331-8422