Unfocused notes on the Markoff equation and T-Singularities
We consider minimal resolutions of the singularities for weighted projective planes of type \(\mathbb{P}(e^2, f^2, g^2)\), where \(e, f, g\) satisfy the Markoff equation \( e^2 + f^2 + g^2 = 3efg\). We give a complete classification of such resolutions in terms of continued fractions similar to clas...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-10 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider minimal resolutions of the singularities for weighted projective planes of type \(\mathbb{P}(e^2, f^2, g^2)\), where \(e, f, g\) satisfy the Markoff equation \( e^2 + f^2 + g^2 = 3efg\). We give a complete classification of such resolutions in terms of continued fractions similar to classical work of Frobenius. In particular, we investigate the behaviour of resolutions under mutations and describe a Cantor set emerging as limits of continued fractions. |
---|---|
ISSN: | 2331-8422 |