Cut-and-Approximate: 3D Shape Reconstruction from Planar Cross-sections with Deep Reinforcement Learning
Current methods for 3D object reconstruction from a set of planar cross-sections still struggle to capture detailed topology or require a considerable number of cross-sections. In this paper, we present, to the best of our knowledge the first 3D shape reconstruction network to solve this task which...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-10 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Current methods for 3D object reconstruction from a set of planar cross-sections still struggle to capture detailed topology or require a considerable number of cross-sections. In this paper, we present, to the best of our knowledge the first 3D shape reconstruction network to solve this task which additionally uses orthographic projections of the shape. Our method is based on applying a Reinforcement Learning algorithm to learn how to effectively parse the shape using a trial-and-error scheme relying on scalar rewards. This method cuts a part of a 3D shape in each step which is then approximated as a polygon mesh. The agent aims to maximize the reward that depends on the accuracy of surface reconstruction for the approximated parts. We also consider pre-training of the network for faster learning using demonstrations generated by a heuristic approach. Experiments show that our training algorithm which benefits from both imitation learning and also self exploration, learns efficient policies faster, which results the agent to produce visually compelling results. |
---|---|
ISSN: | 2331-8422 |