Some new scaled conjugate gradient methods via symmetric rank-one update for unconstrained optimization
This work demonstrates some of the scaled conjugate gradient algorithms based on order-one symmetric modernization. We adopted the outstanding attributes of the symmetric rank-one update (SR1) in providing superior Hessian approximations that lead to the development of a conjugate gradient with desc...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This work demonstrates some of the scaled conjugate gradient algorithms based on order-one symmetric modernization. We adopted the outstanding attributes of the symmetric rank-one update (SR1) in providing superior Hessian approximations that lead to the development of a conjugate gradient with descent property and having no resources for the matrices. The obtained numerical results depict the superiority of the method. |
---|---|
ISSN: | 0094-243X 1551-7616 |
DOI: | 10.1063/5.0093629 |