Resolvents and complex powers of semiclassical cone operators

We give a uniform description of resolvents and complex powers of elliptic semiclassical cone differential operators as the semiclassical parameter h tends to 0. An example of such an operator is the shifted semiclassical Laplacian h2Δg+1$h^2\Delta _g+1$ on a manifold (X,g)$(X,g)$ of dimension n≥3$n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Nachrichten 2022-10, Vol.295 (10), p.1990-2035
1. Verfasser: Hintz, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We give a uniform description of resolvents and complex powers of elliptic semiclassical cone differential operators as the semiclassical parameter h tends to 0. An example of such an operator is the shifted semiclassical Laplacian h2Δg+1$h^2\Delta _g+1$ on a manifold (X,g)$(X,g)$ of dimension n≥3$n\ge 3$ with conic singularities. Our approach is constructive and based on techniques from geometric microlocal analysis: we construct the Schwartz kernels of resolvents and complex powers as conormal distributions on a suitable resolution of the space [0,1)h×X×X$[0,1)_h\times X\times X$ of h‐dependent integral kernels; the construction of complex powers relies on a calculus with a second semiclassical parameter. As an application, we characterize the domains of (h2Δg+1)w/2${\big (h^2\Delta _g+1\big )}^{w/2}$ for Rew∈−n2,n2$\operatorname{Re}w\in \left(-\tfrac{n}{2},\tfrac{n}{2}\right)$ and use this to prove the propagation of semiclassical regularity through a cone point on a range of weighted semiclassical function spaces.
ISSN:0025-584X
1522-2616
DOI:10.1002/mana.202100004