Resolvents and complex powers of semiclassical cone operators
We give a uniform description of resolvents and complex powers of elliptic semiclassical cone differential operators as the semiclassical parameter h tends to 0. An example of such an operator is the shifted semiclassical Laplacian h2Δg+1$h^2\Delta _g+1$ on a manifold (X,g)$(X,g)$ of dimension n≥3$n...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2022-10, Vol.295 (10), p.1990-2035 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a uniform description of resolvents and complex powers of elliptic semiclassical cone differential operators as the semiclassical parameter h tends to 0. An example of such an operator is the shifted semiclassical Laplacian h2Δg+1$h^2\Delta _g+1$ on a manifold (X,g)$(X,g)$ of dimension n≥3$n\ge 3$ with conic singularities. Our approach is constructive and based on techniques from geometric microlocal analysis: we construct the Schwartz kernels of resolvents and complex powers as conormal distributions on a suitable resolution of the space [0,1)h×X×X$[0,1)_h\times X\times X$ of h‐dependent integral kernels; the construction of complex powers relies on a calculus with a second semiclassical parameter. As an application, we characterize the domains of (h2Δg+1)w/2${\big (h^2\Delta _g+1\big )}^{w/2}$ for Rew∈−n2,n2$\operatorname{Re}w\in \left(-\tfrac{n}{2},\tfrac{n}{2}\right)$ and use this to prove the propagation of semiclassical regularity through a cone point on a range of weighted semiclassical function spaces. |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.202100004 |