Acetoxymethyl-BODIPY dyes: a universal platform for the fluorescent labeling of nucleophiles
Current methods for the preparation of functional small-molecule fluorophores generally require labor-intensive, multi-step synthetic routes for all the major chromophoric groups. In spite of recent significant contributions from numerous laboratories, the paucity of rapid, straightforward and wide-...
Gespeichert in:
Veröffentlicht in: | Organic Chemistry Frontiers 2022-10, Vol.9 (21), p.5774-5789 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Current methods for the preparation of functional small-molecule fluorophores generally require labor-intensive, multi-step synthetic routes for all the major chromophoric groups. In spite of recent significant contributions from numerous laboratories, the paucity of rapid, straightforward and wide-scope synthetic strategies in this field is limiting the development of advanced probes for bioimaging, sensing and therapeutic applications. We describe herein a general and robust methodology for the one-step fluorescent labeling of a wide variety of molecules having
C
-,
N
-,
P
-,
O
-,
S
-, or halide-nucleophilic centers, using stable and readily available acetoxymethyl-BODIPYs as reagents in the presence of an acid catalyst. This modular methodology allows a very facile preparation of mono- and di-functional probes incorporating a broad assortment of biomolecules, enzyme cofactors, natural products, and other chromophores, as well as chemical functionalities for a wide range of applications including bioorthogonal conjugation, polymerization, and supramolecular chemistry, among others. The photophysical properties and preliminary applications of the new probes in live-cell imaging were also studied. The described strategy enables the high-throughput engineering of novel BODIPY dyes with diverse functionalities for basic and applied science with potential for innovative technological applications. |
---|---|
ISSN: | 2052-4129 2052-4110 2052-4129 2052-4110 |
DOI: | 10.1039/D2QO01099B |