An Efficient Quantum Decoder for Prime-Power Fields

We consider a version of the nearest-codeword problem on finite fields \(\mathbb{F}_q\) using the Manhattan distance, an analog of the Hamming metric for non-binary alphabets. Similarly to other lattice related problems, this problem is NP-hard even up to constant factor approximation. We show, howe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-09
1. Verfasser: Eldar, Lior
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a version of the nearest-codeword problem on finite fields \(\mathbb{F}_q\) using the Manhattan distance, an analog of the Hamming metric for non-binary alphabets. Similarly to other lattice related problems, this problem is NP-hard even up to constant factor approximation. We show, however, that for \(q = p^m\) where \(p\) is small relative to the code block-size \(n\), there is a quantum algorithm that solves the problem in time \({\rm poly}(n)\), for approximation factor \(1/n^2\), for any \(p\). On the other hand, to the best of our knowledge, classical algorithms can efficiently solve the problem only for much smaller inverse polynomial factors. Hence, the decoder provides an exponential improvement over classical algorithms, and places limitations on the cryptographic security of large-alphabet extensions of code-based cryptosystems like Classic McEliece.
ISSN:2331-8422