C-EEUC: a Cluster Routing Protocol for Coal Mine Wireless Sensor Network Based on Fog Computing and 5G

In underground coal mine, the routing protocol in Wireless Sensor Network (WSN) based on fog computing can effectively achieve combination the monitoring task with the computing task, and provide the correct data forwarding path to meet the requirements of the aggregation and transmission of sensed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mobile networks and applications 2022-10, Vol.27 (5), p.1853-1866
Hauptverfasser: Chen, Wei, Zhang, Bobin, Yang, Xiao, Fang, Weidong, Zhang, Wuxiong, Jiang, Xiaorong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In underground coal mine, the routing protocol in Wireless Sensor Network (WSN) based on fog computing can effectively achieve combination the monitoring task with the computing task, and provide the correct data forwarding path to meet the requirements of the aggregation and transmission of sensed information. However, the energy efficiency is still taken into account, especially, the unbalance of energy consumption. 5G is a technical system of high frequency and low frequency mixing, with characteristics of large capacity, low energy consumption and low cost. With the formal freeze on 5G NSA standards, 5G networks are one step closer to our lives. In this paper, a centralized non-uniform clustering routing protocol C-EEUC based on the residual energy and communication cost. The C-EEUC protocol considers all nodes as candidate cluster heads in the clustering stage and defines a weight matrix P. The value of the matrix elements takes into account the residual energy of nodes and the cost of communication between nodes and cluster heads, selected as the basis for the cluster head. When selecting a cluster head, each time a node with the largest weight is selected from a set of candidate cluster heads, other candidate cluster heads within the competition range abandon competition, and then updates the candidate cluster head set. Experimental results show that the protocol optimized in this paper can effectively extend the network life cycle.
ISSN:1383-469X
1572-8153
DOI:10.1007/s11036-019-01401-9