Open problems in medical federated learning

Purpose>This study aims to summarize the critical issues in medical federated learning and applicable solutions. Also, detailed explanations of how federated learning techniques can be applied to the medical field are presented. About 80 reference studies described in the field were reviewed, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of Web information systems 2022-10, Vol.18 (2/3), p.77-99
Hauptverfasser: Yoo, Joo Hun, Jeong, Hyejun, Lee, Jaehyeok, Chung, Tai-Myoung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Purpose>This study aims to summarize the critical issues in medical federated learning and applicable solutions. Also, detailed explanations of how federated learning techniques can be applied to the medical field are presented. About 80 reference studies described in the field were reviewed, and the federated learning framework currently being developed by the research team is provided. This paper will help researchers to build an actual medical federated learning environment.Design/methodology/approach>Since machine learning techniques emerged, more efficient analysis was possible with a large amount of data. However, data regulations have been tightened worldwide, and the usage of centralized machine learning methods has become almost infeasible. Federated learning techniques have been introduced as a solution. Even with its powerful structural advantages, there still exist unsolved challenges in federated learning in a real medical data environment. This paper aims to summarize those by category and presents possible solutions.Findings>This paper provides four critical categorized issues to be aware of when applying the federated learning technique to the actual medical data environment, then provides general guidelines for building a federated learning environment as a solution.Originality/value>Existing studies have dealt with issues such as heterogeneity problems in the federated learning environment itself, but those were lacking on how these issues incur problems in actual working tasks. Therefore, this paper helps researchers understand the federated learning issues through examples of actual medical machine learning environments.
ISSN:1744-0084
1744-0084
1744-0092
DOI:10.1108/IJWIS-04-2022-0080