Scaling Instruction-Finetuned Language Models

Finetuning language models on a collection of datasets phrased as instructions has been shown to improve model performance and generalization to unseen tasks. In this paper we explore instruction finetuning with a particular focus on (1) scaling the number of tasks, (2) scaling the model size, and (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-12
Hauptverfasser: Chung, Hyung Won, Hou, Le, Longpre, Shayne, Barret Zoph, Tay, Yi, Fedus, William, Li, Yunxuan, Wang, Xuezhi, Dehghani, Mostafa, Brahma, Siddhartha, Webson, Albert, Gu, Shixiang Shane, Dai, Zhuyun, Suzgun, Mirac, Chen, Xinyun, Chowdhery, Aakanksha, Castro-Ros, Alex, Pellat, Marie, Robinson, Kevin, Dasha Valter, Narang, Sharan, Mishra, Gaurav, Adams, Yu, Zhao, Vincent, Huang, Yanping, Dai, Andrew, Yu, Hongkun, Petrov, Slav, Chi, Ed H, Dean, Jeff, Devlin, Jacob, Roberts, Adam, Zhou, Denny, Le, Quoc V, Wei, Jason
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Finetuning language models on a collection of datasets phrased as instructions has been shown to improve model performance and generalization to unseen tasks. In this paper we explore instruction finetuning with a particular focus on (1) scaling the number of tasks, (2) scaling the model size, and (3) finetuning on chain-of-thought data. We find that instruction finetuning with the above aspects dramatically improves performance on a variety of model classes (PaLM, T5, U-PaLM), prompting setups (zero-shot, few-shot, CoT), and evaluation benchmarks (MMLU, BBH, TyDiQA, MGSM, open-ended generation). For instance, Flan-PaLM 540B instruction-finetuned on 1.8K tasks outperforms PALM 540B by a large margin (+9.4% on average). Flan-PaLM 540B achieves state-of-the-art performance on several benchmarks, such as 75.2% on five-shot MMLU. We also publicly release Flan-T5 checkpoints, which achieve strong few-shot performance even compared to much larger models, such as PaLM 62B. Overall, instruction finetuning is a general method for improving the performance and usability of pretrained language models.
ISSN:2331-8422