Knowledge-Enhanced Relation Extraction Dataset
Recently, knowledge-enhanced methods leveraging auxiliary knowledge graphs have emerged in relation extraction, surpassing traditional text-based approaches. However, to our best knowledge, there is currently no public dataset available that encompasses both evidence sentences and knowledge graphs f...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-04 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently, knowledge-enhanced methods leveraging auxiliary knowledge graphs have emerged in relation extraction, surpassing traditional text-based approaches. However, to our best knowledge, there is currently no public dataset available that encompasses both evidence sentences and knowledge graphs for knowledge-enhanced relation extraction. To address this gap, we introduce the Knowledge-Enhanced Relation Extraction Dataset (KERED). KERED annotates each sentence with a relational fact, and it provides knowledge context for entities through entity linking. Using our curated dataset, We compared contemporary relation extraction methods under two prevalent task settings: sentence-level and bag-level. The experimental result shows the knowledge graphs provided by KERED can support knowledge-enhanced relation extraction methods. We believe that KERED offers high-quality relation extraction datasets with corresponding knowledge graphs for evaluating the performance of knowledge-enhanced relation extraction methods. Our dataset is available at: \url{https://figshare.com/projects/KERED/134459} |
---|---|
ISSN: | 2331-8422 |