Revisiting -Reciprocal Distance Re-Ranking for Skeleton-Based Person Re-Identification

Person re-identification (re-ID) as a retrieval task often utilizes a re-ranking model to improve performance. Existing re-ranking methods are typically designed for conventional person re-ID with RGB images, while skeleton representation re-ranking for skeleton-based person re-ID still remains to b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2022, Vol.29, p.2103-2107
Hauptverfasser: Rao, Haocong, Li, Yuan, Miao, Chunyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Person re-identification (re-ID) as a retrieval task often utilizes a re-ranking model to improve performance. Existing re-ranking methods are typically designed for conventional person re-ID with RGB images, while skeleton representation re-ranking for skeleton-based person re-ID still remains to be explored. To fill this gap, we revisit the [Formula Omitted]-reciprocal distance re-ranking model in this letter, and propose a generic re-ranking method that exploits the salient skeleton features to perform [Formula Omitted]-reciprocal distance encoding for skeleton-based person re-ID re-ranking. In particular, we devise the skeleton sequence pooling to aggregate the most salient features of skeletons within a sequence, and combine both original Euclidean distance and [Formula Omitted]-reciprocal distance to re-rank the skeleton sequence representations for person re-ID. Furthermore, we propose the context-based Rank-1 voting that jointly exploits the initial ranking list and re-ranking list to vote for the top candidate to enhance the Rank-1 matching. Extensive experiments on three public benchmarks demonstrate that our approach can effectively re-rank different state-of-the-art skeleton representations and significantly improve their person re-ID performance.
ISSN:1070-9908
1558-2361
DOI:10.1109/LSP.2022.3212634