AFFINE LOGIC FOR CONSTRUCTIVE MATHEMATICS
We show that numerous distinctive concepts of constructive mathematics arise automatically from an “antithesis” translation of affine logic into intuitionistic logic via a Chu/Dialectica construction. This includes apartness relations, complemented subsets, anti-subgroups and anti-ideals, strict and...
Gespeichert in:
Veröffentlicht in: | The bulletin of symbolic logic 2022-09, Vol.28 (3), p.327-386 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 386 |
---|---|
container_issue | 3 |
container_start_page | 327 |
container_title | The bulletin of symbolic logic |
container_volume | 28 |
creator | SHULMAN, MICHAEL |
description | We show that numerous distinctive concepts of constructive mathematics arise automatically from an “antithesis” translation of affine logic into intuitionistic logic via a Chu/Dialectica construction. This includes apartness relations, complemented subsets, anti-subgroups and anti-ideals, strict and non-strict order pairs, cut-valued metrics, and apartness spaces. We also explain the constructive bifurcation of some classical concepts using the choice between multiplicative and additive affine connectives. Affine logic and the antithesis construction thus systematically “constructivize” classical definitions, handling the resulting bookkeeping automatically. |
doi_str_mv | 10.1017/bsl.2022.28 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2726901795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_bsl_2022_28</cupid><jstor_id>27166952</jstor_id><sourcerecordid>27166952</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-97fa1e4ac6ec5f50691335f9c0acffaedab9cb23228ba951608219ee825d441e3</originalsourceid><addsrcrecordid>eNptkEFLAzEQhYMoWKsnz8KCJ5GtyWySTY5l2bULtYV26zVk00RaWrcm7cF_b2pFL15mBuab95iH0C3BA4JJ_tSGzQAwwADEGeoRSbOUCUnP44xzmQop-CW6CmGNMaGcsh56GFZVPSmT8fS5LpJqOkuK6WTezBZFU7-WycuwGZWx1MX8Gl04vQn25qf30aIqm2KUfp8Ox6nJgOxTmTtNLNWGW8Mcw1ySLGNOGqyNc9oudStNCxmAaLVkhGMBRForgC0pJTbro_uT7s53Hwcb9mrdHfx7tFSQA5fxT8ki9XiijO9C8NapnV9ttf9UBKtjFipmoY5ZKBCRvjvR67Dv_C8KOeFcMoj79EdNb1u_Wr7ZP9P_9L4AtJhlIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726901795</pqid></control><display><type>article</type><title>AFFINE LOGIC FOR CONSTRUCTIVE MATHEMATICS</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>Cambridge University Press Journals Complete</source><creator>SHULMAN, MICHAEL</creator><creatorcontrib>SHULMAN, MICHAEL</creatorcontrib><description>We show that numerous distinctive concepts of constructive mathematics arise automatically from an “antithesis” translation of affine logic into intuitionistic logic via a Chu/Dialectica construction. This includes apartness relations, complemented subsets, anti-subgroups and anti-ideals, strict and non-strict order pairs, cut-valued metrics, and apartness spaces. We also explain the constructive bifurcation of some classical concepts using the choice between multiplicative and additive affine connectives. Affine logic and the antithesis construction thus systematically “constructivize” classical definitions, handling the resulting bookkeeping automatically.</description><identifier>ISSN: 1079-8986</identifier><identifier>EISSN: 1943-5894</identifier><identifier>DOI: 10.1017/bsl.2022.28</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Logic ; Mathematical analysis ; Mathematicians ; Mathematics ; Subgroups ; Theorems</subject><ispartof>The bulletin of symbolic logic, 2022-09, Vol.28 (3), p.327-386</ispartof><rights>The Author(s), 2022. Published by Cambridge University Press on behalf of The Association for Symbolic Logic</rights><rights>The Author(s), 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-97fa1e4ac6ec5f50691335f9c0acffaedab9cb23228ba951608219ee825d441e3</citedby><cites>FETCH-LOGICAL-c321t-97fa1e4ac6ec5f50691335f9c0acffaedab9cb23228ba951608219ee825d441e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/27166952$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S1079898622000282/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,803,832,27924,27925,55628,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>SHULMAN, MICHAEL</creatorcontrib><title>AFFINE LOGIC FOR CONSTRUCTIVE MATHEMATICS</title><title>The bulletin of symbolic logic</title><addtitle>Bull. symb. log</addtitle><description>We show that numerous distinctive concepts of constructive mathematics arise automatically from an “antithesis” translation of affine logic into intuitionistic logic via a Chu/Dialectica construction. This includes apartness relations, complemented subsets, anti-subgroups and anti-ideals, strict and non-strict order pairs, cut-valued metrics, and apartness spaces. We also explain the constructive bifurcation of some classical concepts using the choice between multiplicative and additive affine connectives. Affine logic and the antithesis construction thus systematically “constructivize” classical definitions, handling the resulting bookkeeping automatically.</description><subject>Logic</subject><subject>Mathematical analysis</subject><subject>Mathematicians</subject><subject>Mathematics</subject><subject>Subgroups</subject><subject>Theorems</subject><issn>1079-8986</issn><issn>1943-5894</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkEFLAzEQhYMoWKsnz8KCJ5GtyWySTY5l2bULtYV26zVk00RaWrcm7cF_b2pFL15mBuab95iH0C3BA4JJ_tSGzQAwwADEGeoRSbOUCUnP44xzmQop-CW6CmGNMaGcsh56GFZVPSmT8fS5LpJqOkuK6WTezBZFU7-WycuwGZWx1MX8Gl04vQn25qf30aIqm2KUfp8Ox6nJgOxTmTtNLNWGW8Mcw1ySLGNOGqyNc9oudStNCxmAaLVkhGMBRForgC0pJTbro_uT7s53Hwcb9mrdHfx7tFSQA5fxT8ki9XiijO9C8NapnV9ttf9UBKtjFipmoY5ZKBCRvjvR67Dv_C8KOeFcMoj79EdNb1u_Wr7ZP9P_9L4AtJhlIg</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>SHULMAN, MICHAEL</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>AABKS</scope><scope>ABJCF</scope><scope>ABSDQ</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M2O</scope><scope>M7S</scope><scope>MBDVC</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope></search><sort><creationdate>20220901</creationdate><title>AFFINE LOGIC FOR CONSTRUCTIVE MATHEMATICS</title><author>SHULMAN, MICHAEL</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-97fa1e4ac6ec5f50691335f9c0acffaedab9cb23228ba951608219ee825d441e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Logic</topic><topic>Mathematical analysis</topic><topic>Mathematicians</topic><topic>Mathematics</topic><topic>Subgroups</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>SHULMAN, MICHAEL</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Philosophy Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>Philosophy Database</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>The bulletin of symbolic logic</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>SHULMAN, MICHAEL</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AFFINE LOGIC FOR CONSTRUCTIVE MATHEMATICS</atitle><jtitle>The bulletin of symbolic logic</jtitle><addtitle>Bull. symb. log</addtitle><date>2022-09-01</date><risdate>2022</risdate><volume>28</volume><issue>3</issue><spage>327</spage><epage>386</epage><pages>327-386</pages><issn>1079-8986</issn><eissn>1943-5894</eissn><abstract>We show that numerous distinctive concepts of constructive mathematics arise automatically from an “antithesis” translation of affine logic into intuitionistic logic via a Chu/Dialectica construction. This includes apartness relations, complemented subsets, anti-subgroups and anti-ideals, strict and non-strict order pairs, cut-valued metrics, and apartness spaces. We also explain the constructive bifurcation of some classical concepts using the choice between multiplicative and additive affine connectives. Affine logic and the antithesis construction thus systematically “constructivize” classical definitions, handling the resulting bookkeeping automatically.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/bsl.2022.28</doi><tpages>60</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1079-8986 |
ispartof | The bulletin of symbolic logic, 2022-09, Vol.28 (3), p.327-386 |
issn | 1079-8986 1943-5894 |
language | eng |
recordid | cdi_proquest_journals_2726901795 |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; Cambridge University Press Journals Complete |
subjects | Logic Mathematical analysis Mathematicians Mathematics Subgroups Theorems |
title | AFFINE LOGIC FOR CONSTRUCTIVE MATHEMATICS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T16%3A20%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AFFINE%20LOGIC%20FOR%20CONSTRUCTIVE%20MATHEMATICS&rft.jtitle=The%20bulletin%20of%20symbolic%20logic&rft.au=SHULMAN,%20MICHAEL&rft.date=2022-09-01&rft.volume=28&rft.issue=3&rft.spage=327&rft.epage=386&rft.pages=327-386&rft.issn=1079-8986&rft.eissn=1943-5894&rft_id=info:doi/10.1017/bsl.2022.28&rft_dat=%3Cjstor_proqu%3E27166952%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726901795&rft_id=info:pmid/&rft_cupid=10_1017_bsl_2022_28&rft_jstor_id=27166952&rfr_iscdi=true |