AFFINE LOGIC FOR CONSTRUCTIVE MATHEMATICS

We show that numerous distinctive concepts of constructive mathematics arise automatically from an “antithesis” translation of affine logic into intuitionistic logic via a Chu/Dialectica construction. This includes apartness relations, complemented subsets, anti-subgroups and anti-ideals, strict and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The bulletin of symbolic logic 2022-09, Vol.28 (3), p.327-386
1. Verfasser: SHULMAN, MICHAEL
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that numerous distinctive concepts of constructive mathematics arise automatically from an “antithesis” translation of affine logic into intuitionistic logic via a Chu/Dialectica construction. This includes apartness relations, complemented subsets, anti-subgroups and anti-ideals, strict and non-strict order pairs, cut-valued metrics, and apartness spaces. We also explain the constructive bifurcation of some classical concepts using the choice between multiplicative and additive affine connectives. Affine logic and the antithesis construction thus systematically “constructivize” classical definitions, handling the resulting bookkeeping automatically.
ISSN:1079-8986
1943-5894
DOI:10.1017/bsl.2022.28