Electronic and Excitonic Properties of MSi2Z4 Monolayers
MA2Z4 monolayers form a new class of hexagonal non-centrosymmetric materials hosting extraordinary spin-valley physics. While only two compounds (MoSi2N4 and WSi2N4) were recently synthesized, theory predicts interesting (opto)electronic properties of a whole new family of such two-dimensional mater...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-10 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | MA2Z4 monolayers form a new class of hexagonal non-centrosymmetric materials hosting extraordinary spin-valley physics. While only two compounds (MoSi2N4 and WSi2N4) were recently synthesized, theory predicts interesting (opto)electronic properties of a whole new family of such two-dimensional materials. Here, the chemical trends of band gaps and spin-orbit splittings of bands in selected MSi2Z4 (M = Mo, W; Z = N, P, As, Sb) compounds are studied from first-principles. Effective Bethe-Salpeter-equation-based calculations reveal high exciton binding energies. Evolution of excitonic energies under external magnetic field is predicted by providing their effective g-factors and diamagnetic coefficients, which can be directly compared to experimental values. In particular, large positive g-factors are predicted for excitons involving higher conduction bands. In view of these predictions, MSi2Z4 monolayers yield a new platform to study excitons and are attractive for optoelectronic devices, also in the forms of heterostructures. In addition, a spin-orbit induced bands inversion is observed in the heaviest studied compound, WSi2Sb4, a hallmark of its topological nature. |
---|---|
ISSN: | 2331-8422 |