CLEAR: Causal Explanations from Attention in Neural Recommenders

We present CLEAR, a method for learning session-specific causal graphs, in the possible presence of latent confounders, from attention in pre-trained attention-based recommenders. These causal graphs describe user behavior, within the context captured by attention, and can provide a counterfactual e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-10
Hauptverfasser: Shami Nisimov, Rohekar, Raanan Y, Gurwicz, Yaniv, Koren, Guy, Novik, Gal
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present CLEAR, a method for learning session-specific causal graphs, in the possible presence of latent confounders, from attention in pre-trained attention-based recommenders. These causal graphs describe user behavior, within the context captured by attention, and can provide a counterfactual explanation for a recommendation. In essence, these causal graphs allow answering "why" questions uniquely for any specific session. Using empirical evaluations we show that, compared to naively using attention weights to explain input-output relations, counterfactual explanations found by CLEAR are shorter and an alternative recommendation is ranked higher in the original top-k recommendations.
ISSN:2331-8422