Lipschitz geometry of pairs of normally embedded Hölder triangles

We consider a special case of the outer bi-Lipschitz classification of real semialgebraic (or, more general, definable in a polynomially bounded o-minimal structure) surface germs, obtained as a union of two normally embedded Hölder triangles. We define a combinatorial invariant of an equivalence cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of mathematics 2022-09, Vol.8 (3), p.766-791
Hauptverfasser: Birbrair, Lev, Gabrielov, Andrei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a special case of the outer bi-Lipschitz classification of real semialgebraic (or, more general, definable in a polynomially bounded o-minimal structure) surface germs, obtained as a union of two normally embedded Hölder triangles. We define a combinatorial invariant of an equivalence class of such surface germs, called σ τ -pizza, and conjecture that, in this special case, it is a complete combinatorial invariant of outer bi-Lipschitz equivalence.
ISSN:2199-675X
2199-6768
DOI:10.1007/s40879-022-00572-2