Lipschitz geometry of pairs of normally embedded Hölder triangles
We consider a special case of the outer bi-Lipschitz classification of real semialgebraic (or, more general, definable in a polynomially bounded o-minimal structure) surface germs, obtained as a union of two normally embedded Hölder triangles. We define a combinatorial invariant of an equivalence cl...
Gespeichert in:
Veröffentlicht in: | European journal of mathematics 2022-09, Vol.8 (3), p.766-791 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a special case of the outer bi-Lipschitz classification of real semialgebraic (or, more general, definable in a polynomially bounded o-minimal structure) surface germs, obtained as a union of two normally embedded Hölder triangles. We define a combinatorial invariant of an equivalence class of such surface germs, called
σ
τ
-pizza, and conjecture that, in this special case, it is a complete combinatorial invariant of outer bi-Lipschitz equivalence. |
---|---|
ISSN: | 2199-675X 2199-6768 |
DOI: | 10.1007/s40879-022-00572-2 |