A Generalization of a Theorem of Erné about the Number of Posets with a Fixed Antichain
Let X and Z be finite disjoint sets and let y be a point not contained in X Z . Marcel Erné showed in 1981, that the number of posets on X Z containing Z as an antichain equals the number of posets R on X Z y in which the points of Z { y } are exactly the maximal points of R . We prove the following...
Gespeichert in:
Veröffentlicht in: | Order (Dordrecht) 2022-10, Vol.39 (3), p.421-434 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
X
and
Z
be finite disjoint sets and let
y
be a point not contained in
X
Z
. Marcel Erné showed in 1981, that the number of posets on
X
Z
containing
Z
as an antichain equals the number of posets
R
on
X
Z
y
in which the points of
Z
{
y
} are exactly the maximal points of
R
. We prove the following generalization: For every poset
Q
with carrier
Z
, the number of posets on
X
Z
containing
Q
as an induced sub-poset equals the number of posets
R
on
X
∪
Z
∪{
y
} which contain
Q
+
y
as an induced sub-poset and in which the maximal points of
Q
+
y
are exactly the maximal points of
R
. Here,
Q
+
y
denotes the direct sum of
Q
and the singleton-poset on
y
. |
---|---|
ISSN: | 0167-8094 1572-9273 |
DOI: | 10.1007/s11083-021-09585-0 |