Gabor orthonormal bases, tiling and periodicity
We show that if the Gabor system { g ( x - t ) e 2 π i s x } , t ∈ T , s ∈ S , is an orthonormal basis in L 2 ( R ) and if the window function g is compactly supported, then both the time shift set T and the frequency shift set S must be periodic. To prove this we establish a necessary functional ti...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2022-12, Vol.384 (3-4), p.1461-1467 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that if the Gabor system
{
g
(
x
-
t
)
e
2
π
i
s
x
}
,
t
∈
T
,
s
∈
S
, is an orthonormal basis in
L
2
(
R
)
and if the window function
g
is compactly supported, then both the time shift set
T
and the frequency shift set
S
must be periodic. To prove this we establish a necessary functional tiling type condition for Gabor orthonormal bases which may be of independent interest. |
---|---|
ISSN: | 0025-5831 1432-1807 |
DOI: | 10.1007/s00208-021-02324-1 |