Gabor orthonormal bases, tiling and periodicity

We show that if the Gabor system { g ( x - t ) e 2 π i s x } , t ∈ T , s ∈ S , is an orthonormal basis in L 2 ( R ) and if the window function g is compactly supported, then both the time shift set T and the frequency shift set S must be periodic. To prove this we establish a necessary functional ti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2022-12, Vol.384 (3-4), p.1461-1467
Hauptverfasser: Debernardi Pinos, Alberto, Lev, Nir
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that if the Gabor system { g ( x - t ) e 2 π i s x } , t ∈ T , s ∈ S , is an orthonormal basis in L 2 ( R ) and if the window function g is compactly supported, then both the time shift set T and the frequency shift set S must be periodic. To prove this we establish a necessary functional tiling type condition for Gabor orthonormal bases which may be of independent interest.
ISSN:0025-5831
1432-1807
DOI:10.1007/s00208-021-02324-1