Representation Learning for Electroencephalogram-Based Biometrics Using Holo-Hilbert Spectral Analysis

In this paper, we propose a subject-independent learning method for electroencephalogram-based biometrics using the Holo-Hilbert spectral analysis method. We propose a neural network architecture that uses as input the spectral maps constructed using this method and considering both frequency and am...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition and image analysis 2022-09, Vol.32 (3), p.682-688
Hauptverfasser: Svetlakov, M., Hodashinsky, I., Sarin, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 688
container_issue 3
container_start_page 682
container_title Pattern recognition and image analysis
container_volume 32
creator Svetlakov, M.
Hodashinsky, I.
Sarin, K.
description In this paper, we propose a subject-independent learning method for electroencephalogram-based biometrics using the Holo-Hilbert spectral analysis method. We propose a neural network architecture that uses as input the spectral maps constructed using this method and considering both frequency and amplitude modulation. The neighbourhood components analysis loss function was used as the loss function for subject-independent learning. The architecture was tested on the publicly available PhysioNet Electroencephalogram Motor Movement/Imagery Dataset achieving a 9.5% equal error rate. The main advantages of the proposed approach are subject-independency and suitability for interpretation using created spectra and Integrated Gradients method.
doi_str_mv 10.1134/S1054661822030415
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726042530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726042530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-40d2929a2e44c8cb631b05ee4c07519203cf49ecdc9ad4d5e30ea8939db5fe463</originalsourceid><addsrcrecordid>eNp1kE9Lw0AUxBdRsFY_gLeA59W3_9LssS3VCgHB2nPYbF5qSrobd9NDv70JFTyIp_dgfjMMQ8g9g0fGhHzaMFAyTVnGOQiQTF2QCVNK0ZQzfjn8g0xH_ZrcxLgHgIxpPiH1O3YBI7re9I13SY4muMbtktqHZNWi7YNHZ7H7NK3fBXOgCxOxShaNP2AfGhuTbRz5tW89XTdtiaFPNt1oNG0yd6Y9xSbekqvatBHvfu6UbJ9XH8s1zd9eXpfznFqms55KqLjm2nCU0ma2TAUrQSFKCzM19AVha6nRVlabSlYKBaDJtNBVqWqUqZiSh3NuF_zXEWNf7P0xDCViwWc8BcmVgIFiZ8oGH2PAuuhCczDhVDAoxjmLP3MOHn72xIF1Owy_yf-bvgFW1XgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726042530</pqid></control><display><type>article</type><title>Representation Learning for Electroencephalogram-Based Biometrics Using Holo-Hilbert Spectral Analysis</title><source>Springer Journals</source><creator>Svetlakov, M. ; Hodashinsky, I. ; Sarin, K.</creator><creatorcontrib>Svetlakov, M. ; Hodashinsky, I. ; Sarin, K.</creatorcontrib><description>In this paper, we propose a subject-independent learning method for electroencephalogram-based biometrics using the Holo-Hilbert spectral analysis method. We propose a neural network architecture that uses as input the spectral maps constructed using this method and considering both frequency and amplitude modulation. The neighbourhood components analysis loss function was used as the loss function for subject-independent learning. The architecture was tested on the publicly available PhysioNet Electroencephalogram Motor Movement/Imagery Dataset achieving a 9.5% equal error rate. The main advantages of the proposed approach are subject-independency and suitability for interpretation using created spectra and Integrated Gradients method.</description><identifier>ISSN: 1054-6618</identifier><identifier>EISSN: 1555-6212</identifier><identifier>DOI: 10.1134/S1054661822030415</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Amplitude modulation ; Biometrics ; Computer architecture ; Computer Science ; Image Processing and Computer Vision ; Learning ; Neural networks ; Pattern Recognition ; SELECTED PAPERS OF THE 8th INTERNATIONAL WORKSHOP “IMAGE MINING. THEORY AND APPLICATIONS” ; Spectrum analysis</subject><ispartof>Pattern recognition and image analysis, 2022-09, Vol.32 (3), p.682-688</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 1054-6618, Pattern Recognition and Image Analysis, 2022, Vol. 32, No. 3, pp. 682–688. © Pleiades Publishing, Ltd., 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-40d2929a2e44c8cb631b05ee4c07519203cf49ecdc9ad4d5e30ea8939db5fe463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1054661822030415$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1054661822030415$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Svetlakov, M.</creatorcontrib><creatorcontrib>Hodashinsky, I.</creatorcontrib><creatorcontrib>Sarin, K.</creatorcontrib><title>Representation Learning for Electroencephalogram-Based Biometrics Using Holo-Hilbert Spectral Analysis</title><title>Pattern recognition and image analysis</title><addtitle>Pattern Recognit. Image Anal</addtitle><description>In this paper, we propose a subject-independent learning method for electroencephalogram-based biometrics using the Holo-Hilbert spectral analysis method. We propose a neural network architecture that uses as input the spectral maps constructed using this method and considering both frequency and amplitude modulation. The neighbourhood components analysis loss function was used as the loss function for subject-independent learning. The architecture was tested on the publicly available PhysioNet Electroencephalogram Motor Movement/Imagery Dataset achieving a 9.5% equal error rate. The main advantages of the proposed approach are subject-independency and suitability for interpretation using created spectra and Integrated Gradients method.</description><subject>Amplitude modulation</subject><subject>Biometrics</subject><subject>Computer architecture</subject><subject>Computer Science</subject><subject>Image Processing and Computer Vision</subject><subject>Learning</subject><subject>Neural networks</subject><subject>Pattern Recognition</subject><subject>SELECTED PAPERS OF THE 8th INTERNATIONAL WORKSHOP “IMAGE MINING. THEORY AND APPLICATIONS”</subject><subject>Spectrum analysis</subject><issn>1054-6618</issn><issn>1555-6212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AUxBdRsFY_gLeA59W3_9LssS3VCgHB2nPYbF5qSrobd9NDv70JFTyIp_dgfjMMQ8g9g0fGhHzaMFAyTVnGOQiQTF2QCVNK0ZQzfjn8g0xH_ZrcxLgHgIxpPiH1O3YBI7re9I13SY4muMbtktqHZNWi7YNHZ7H7NK3fBXOgCxOxShaNP2AfGhuTbRz5tW89XTdtiaFPNt1oNG0yd6Y9xSbekqvatBHvfu6UbJ9XH8s1zd9eXpfznFqms55KqLjm2nCU0ma2TAUrQSFKCzM19AVha6nRVlabSlYKBaDJtNBVqWqUqZiSh3NuF_zXEWNf7P0xDCViwWc8BcmVgIFiZ8oGH2PAuuhCczDhVDAoxjmLP3MOHn72xIF1Owy_yf-bvgFW1XgA</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Svetlakov, M.</creator><creator>Hodashinsky, I.</creator><creator>Sarin, K.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220901</creationdate><title>Representation Learning for Electroencephalogram-Based Biometrics Using Holo-Hilbert Spectral Analysis</title><author>Svetlakov, M. ; Hodashinsky, I. ; Sarin, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-40d2929a2e44c8cb631b05ee4c07519203cf49ecdc9ad4d5e30ea8939db5fe463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amplitude modulation</topic><topic>Biometrics</topic><topic>Computer architecture</topic><topic>Computer Science</topic><topic>Image Processing and Computer Vision</topic><topic>Learning</topic><topic>Neural networks</topic><topic>Pattern Recognition</topic><topic>SELECTED PAPERS OF THE 8th INTERNATIONAL WORKSHOP “IMAGE MINING. THEORY AND APPLICATIONS”</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Svetlakov, M.</creatorcontrib><creatorcontrib>Hodashinsky, I.</creatorcontrib><creatorcontrib>Sarin, K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition and image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Svetlakov, M.</au><au>Hodashinsky, I.</au><au>Sarin, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representation Learning for Electroencephalogram-Based Biometrics Using Holo-Hilbert Spectral Analysis</atitle><jtitle>Pattern recognition and image analysis</jtitle><stitle>Pattern Recognit. Image Anal</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>32</volume><issue>3</issue><spage>682</spage><epage>688</epage><pages>682-688</pages><issn>1054-6618</issn><eissn>1555-6212</eissn><abstract>In this paper, we propose a subject-independent learning method for electroencephalogram-based biometrics using the Holo-Hilbert spectral analysis method. We propose a neural network architecture that uses as input the spectral maps constructed using this method and considering both frequency and amplitude modulation. The neighbourhood components analysis loss function was used as the loss function for subject-independent learning. The architecture was tested on the publicly available PhysioNet Electroencephalogram Motor Movement/Imagery Dataset achieving a 9.5% equal error rate. The main advantages of the proposed approach are subject-independency and suitability for interpretation using created spectra and Integrated Gradients method.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1054661822030415</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1054-6618
ispartof Pattern recognition and image analysis, 2022-09, Vol.32 (3), p.682-688
issn 1054-6618
1555-6212
language eng
recordid cdi_proquest_journals_2726042530
source Springer Journals
subjects Amplitude modulation
Biometrics
Computer architecture
Computer Science
Image Processing and Computer Vision
Learning
Neural networks
Pattern Recognition
SELECTED PAPERS OF THE 8th INTERNATIONAL WORKSHOP “IMAGE MINING. THEORY AND APPLICATIONS”
Spectrum analysis
title Representation Learning for Electroencephalogram-Based Biometrics Using Holo-Hilbert Spectral Analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A21%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representation%20Learning%20for%20Electroencephalogram-Based%20Biometrics%20Using%20Holo-Hilbert%20Spectral%20Analysis&rft.jtitle=Pattern%20recognition%20and%20image%20analysis&rft.au=Svetlakov,%20M.&rft.date=2022-09-01&rft.volume=32&rft.issue=3&rft.spage=682&rft.epage=688&rft.pages=682-688&rft.issn=1054-6618&rft.eissn=1555-6212&rft_id=info:doi/10.1134/S1054661822030415&rft_dat=%3Cproquest_cross%3E2726042530%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726042530&rft_id=info:pmid/&rfr_iscdi=true