Representation Learning for Electroencephalogram-Based Biometrics Using Holo-Hilbert Spectral Analysis
In this paper, we propose a subject-independent learning method for electroencephalogram-based biometrics using the Holo-Hilbert spectral analysis method. We propose a neural network architecture that uses as input the spectral maps constructed using this method and considering both frequency and am...
Gespeichert in:
Veröffentlicht in: | Pattern recognition and image analysis 2022-09, Vol.32 (3), p.682-688 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 688 |
---|---|
container_issue | 3 |
container_start_page | 682 |
container_title | Pattern recognition and image analysis |
container_volume | 32 |
creator | Svetlakov, M. Hodashinsky, I. Sarin, K. |
description | In this paper, we propose a subject-independent learning method for electroencephalogram-based biometrics using the Holo-Hilbert spectral analysis method. We propose a neural network architecture that uses as input the spectral maps constructed using this method and considering both frequency and amplitude modulation. The neighbourhood components analysis loss function was used as the loss function for subject-independent learning. The architecture was tested on the publicly available PhysioNet Electroencephalogram Motor Movement/Imagery Dataset achieving a 9.5% equal error rate. The main advantages of the proposed approach are subject-independency and suitability for interpretation using created spectra and Integrated Gradients method. |
doi_str_mv | 10.1134/S1054661822030415 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2726042530</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726042530</sourcerecordid><originalsourceid>FETCH-LOGICAL-c198t-40d2929a2e44c8cb631b05ee4c07519203cf49ecdc9ad4d5e30ea8939db5fe463</originalsourceid><addsrcrecordid>eNp1kE9Lw0AUxBdRsFY_gLeA59W3_9LssS3VCgHB2nPYbF5qSrobd9NDv70JFTyIp_dgfjMMQ8g9g0fGhHzaMFAyTVnGOQiQTF2QCVNK0ZQzfjn8g0xH_ZrcxLgHgIxpPiH1O3YBI7re9I13SY4muMbtktqHZNWi7YNHZ7H7NK3fBXOgCxOxShaNP2AfGhuTbRz5tW89XTdtiaFPNt1oNG0yd6Y9xSbekqvatBHvfu6UbJ9XH8s1zd9eXpfznFqms55KqLjm2nCU0ma2TAUrQSFKCzM19AVha6nRVlabSlYKBaDJtNBVqWqUqZiSh3NuF_zXEWNf7P0xDCViwWc8BcmVgIFiZ8oGH2PAuuhCczDhVDAoxjmLP3MOHn72xIF1Owy_yf-bvgFW1XgA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726042530</pqid></control><display><type>article</type><title>Representation Learning for Electroencephalogram-Based Biometrics Using Holo-Hilbert Spectral Analysis</title><source>Springer Journals</source><creator>Svetlakov, M. ; Hodashinsky, I. ; Sarin, K.</creator><creatorcontrib>Svetlakov, M. ; Hodashinsky, I. ; Sarin, K.</creatorcontrib><description>In this paper, we propose a subject-independent learning method for electroencephalogram-based biometrics using the Holo-Hilbert spectral analysis method. We propose a neural network architecture that uses as input the spectral maps constructed using this method and considering both frequency and amplitude modulation. The neighbourhood components analysis loss function was used as the loss function for subject-independent learning. The architecture was tested on the publicly available PhysioNet Electroencephalogram Motor Movement/Imagery Dataset achieving a 9.5% equal error rate. The main advantages of the proposed approach are subject-independency and suitability for interpretation using created spectra and Integrated Gradients method.</description><identifier>ISSN: 1054-6618</identifier><identifier>EISSN: 1555-6212</identifier><identifier>DOI: 10.1134/S1054661822030415</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Amplitude modulation ; Biometrics ; Computer architecture ; Computer Science ; Image Processing and Computer Vision ; Learning ; Neural networks ; Pattern Recognition ; SELECTED PAPERS OF THE 8th INTERNATIONAL WORKSHOP “IMAGE MINING. THEORY AND APPLICATIONS” ; Spectrum analysis</subject><ispartof>Pattern recognition and image analysis, 2022-09, Vol.32 (3), p.682-688</ispartof><rights>Pleiades Publishing, Ltd. 2022. ISSN 1054-6618, Pattern Recognition and Image Analysis, 2022, Vol. 32, No. 3, pp. 682–688. © Pleiades Publishing, Ltd., 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c198t-40d2929a2e44c8cb631b05ee4c07519203cf49ecdc9ad4d5e30ea8939db5fe463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1054661822030415$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1054661822030415$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,41486,42555,51317</link.rule.ids></links><search><creatorcontrib>Svetlakov, M.</creatorcontrib><creatorcontrib>Hodashinsky, I.</creatorcontrib><creatorcontrib>Sarin, K.</creatorcontrib><title>Representation Learning for Electroencephalogram-Based Biometrics Using Holo-Hilbert Spectral Analysis</title><title>Pattern recognition and image analysis</title><addtitle>Pattern Recognit. Image Anal</addtitle><description>In this paper, we propose a subject-independent learning method for electroencephalogram-based biometrics using the Holo-Hilbert spectral analysis method. We propose a neural network architecture that uses as input the spectral maps constructed using this method and considering both frequency and amplitude modulation. The neighbourhood components analysis loss function was used as the loss function for subject-independent learning. The architecture was tested on the publicly available PhysioNet Electroencephalogram Motor Movement/Imagery Dataset achieving a 9.5% equal error rate. The main advantages of the proposed approach are subject-independency and suitability for interpretation using created spectra and Integrated Gradients method.</description><subject>Amplitude modulation</subject><subject>Biometrics</subject><subject>Computer architecture</subject><subject>Computer Science</subject><subject>Image Processing and Computer Vision</subject><subject>Learning</subject><subject>Neural networks</subject><subject>Pattern Recognition</subject><subject>SELECTED PAPERS OF THE 8th INTERNATIONAL WORKSHOP “IMAGE MINING. THEORY AND APPLICATIONS”</subject><subject>Spectrum analysis</subject><issn>1054-6618</issn><issn>1555-6212</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AUxBdRsFY_gLeA59W3_9LssS3VCgHB2nPYbF5qSrobd9NDv70JFTyIp_dgfjMMQ8g9g0fGhHzaMFAyTVnGOQiQTF2QCVNK0ZQzfjn8g0xH_ZrcxLgHgIxpPiH1O3YBI7re9I13SY4muMbtktqHZNWi7YNHZ7H7NK3fBXOgCxOxShaNP2AfGhuTbRz5tW89XTdtiaFPNt1oNG0yd6Y9xSbekqvatBHvfu6UbJ9XH8s1zd9eXpfznFqms55KqLjm2nCU0ma2TAUrQSFKCzM19AVha6nRVlabSlYKBaDJtNBVqWqUqZiSh3NuF_zXEWNf7P0xDCViwWc8BcmVgIFiZ8oGH2PAuuhCczDhVDAoxjmLP3MOHn72xIF1Owy_yf-bvgFW1XgA</recordid><startdate>20220901</startdate><enddate>20220901</enddate><creator>Svetlakov, M.</creator><creator>Hodashinsky, I.</creator><creator>Sarin, K.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20220901</creationdate><title>Representation Learning for Electroencephalogram-Based Biometrics Using Holo-Hilbert Spectral Analysis</title><author>Svetlakov, M. ; Hodashinsky, I. ; Sarin, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c198t-40d2929a2e44c8cb631b05ee4c07519203cf49ecdc9ad4d5e30ea8939db5fe463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amplitude modulation</topic><topic>Biometrics</topic><topic>Computer architecture</topic><topic>Computer Science</topic><topic>Image Processing and Computer Vision</topic><topic>Learning</topic><topic>Neural networks</topic><topic>Pattern Recognition</topic><topic>SELECTED PAPERS OF THE 8th INTERNATIONAL WORKSHOP “IMAGE MINING. THEORY AND APPLICATIONS”</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Svetlakov, M.</creatorcontrib><creatorcontrib>Hodashinsky, I.</creatorcontrib><creatorcontrib>Sarin, K.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Pattern recognition and image analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Svetlakov, M.</au><au>Hodashinsky, I.</au><au>Sarin, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Representation Learning for Electroencephalogram-Based Biometrics Using Holo-Hilbert Spectral Analysis</atitle><jtitle>Pattern recognition and image analysis</jtitle><stitle>Pattern Recognit. Image Anal</stitle><date>2022-09-01</date><risdate>2022</risdate><volume>32</volume><issue>3</issue><spage>682</spage><epage>688</epage><pages>682-688</pages><issn>1054-6618</issn><eissn>1555-6212</eissn><abstract>In this paper, we propose a subject-independent learning method for electroencephalogram-based biometrics using the Holo-Hilbert spectral analysis method. We propose a neural network architecture that uses as input the spectral maps constructed using this method and considering both frequency and amplitude modulation. The neighbourhood components analysis loss function was used as the loss function for subject-independent learning. The architecture was tested on the publicly available PhysioNet Electroencephalogram Motor Movement/Imagery Dataset achieving a 9.5% equal error rate. The main advantages of the proposed approach are subject-independency and suitability for interpretation using created spectra and Integrated Gradients method.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1054661822030415</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1054-6618 |
ispartof | Pattern recognition and image analysis, 2022-09, Vol.32 (3), p.682-688 |
issn | 1054-6618 1555-6212 |
language | eng |
recordid | cdi_proquest_journals_2726042530 |
source | Springer Journals |
subjects | Amplitude modulation Biometrics Computer architecture Computer Science Image Processing and Computer Vision Learning Neural networks Pattern Recognition SELECTED PAPERS OF THE 8th INTERNATIONAL WORKSHOP “IMAGE MINING. THEORY AND APPLICATIONS” Spectrum analysis |
title | Representation Learning for Electroencephalogram-Based Biometrics Using Holo-Hilbert Spectral Analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T16%3A21%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Representation%20Learning%20for%20Electroencephalogram-Based%20Biometrics%20Using%20Holo-Hilbert%20Spectral%20Analysis&rft.jtitle=Pattern%20recognition%20and%20image%20analysis&rft.au=Svetlakov,%20M.&rft.date=2022-09-01&rft.volume=32&rft.issue=3&rft.spage=682&rft.epage=688&rft.pages=682-688&rft.issn=1054-6618&rft.eissn=1555-6212&rft_id=info:doi/10.1134/S1054661822030415&rft_dat=%3Cproquest_cross%3E2726042530%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726042530&rft_id=info:pmid/&rfr_iscdi=true |