Representation Learning for Electroencephalogram-Based Biometrics Using Holo-Hilbert Spectral Analysis

In this paper, we propose a subject-independent learning method for electroencephalogram-based biometrics using the Holo-Hilbert spectral analysis method. We propose a neural network architecture that uses as input the spectral maps constructed using this method and considering both frequency and am...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition and image analysis 2022-09, Vol.32 (3), p.682-688
Hauptverfasser: Svetlakov, M., Hodashinsky, I., Sarin, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we propose a subject-independent learning method for electroencephalogram-based biometrics using the Holo-Hilbert spectral analysis method. We propose a neural network architecture that uses as input the spectral maps constructed using this method and considering both frequency and amplitude modulation. The neighbourhood components analysis loss function was used as the loss function for subject-independent learning. The architecture was tested on the publicly available PhysioNet Electroencephalogram Motor Movement/Imagery Dataset achieving a 9.5% equal error rate. The main advantages of the proposed approach are subject-independency and suitability for interpretation using created spectra and Integrated Gradients method.
ISSN:1054-6618
1555-6212
DOI:10.1134/S1054661822030415