W1,p(·)-Regularity for a Class of Non-uniformly Elliptic Problems with Orlicz Growth
We prove a local W 1 , p ( · ) -regularity for the distributional solutions to double phase elliptic equations with Orlicz growth, and the variable exponents p ( x ) > 1 satisfying the log-Hölder continuity. Moreover, we establish a local Calderón–Zygmund estimate for asymptotically regular doubl...
Gespeichert in:
Veröffentlicht in: | Mediterranean journal of mathematics 2022, Vol.19 (6) |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Mediterranean journal of mathematics |
container_volume | 19 |
creator | Liang, Shuang Gao, Hongya Zheng, Shenzhou |
description | We prove a local
W
1
,
p
(
·
)
-regularity for the distributional solutions to double phase elliptic equations with Orlicz growth, and the variable exponents
p
(
x
)
>
1
satisfying the log-Hölder continuity. Moreover, we establish a local Calderón–Zygmund estimate for asymptotically regular double phase elliptic problems with Orlicz growth, which means that the nonlinearity is getting close to the regular problems when the gradient of its solution goes to infinity. |
doi_str_mv | 10.1007/s00009-022-02176-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2726042383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726042383</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-b53064cf1a7539a8559d0fa072eab1b5025ce4d38aff7b1d7a6a8ab85df7bb8d3</originalsourceid><addsrcrecordid>eNpFkN1KwzAUgIMoOKcv4FXAGwWjJ0mTtJcytikMJ-LwsqRtsnVkbU1axnwx730yqxM9cDg_fJwDH0LnFG4ogLoN0EdCgLE-qZKEHaABlRKIiER0-NdH8hidhLAGYAnlbIAWr_S6ufz8uCLPZtk57ct2h23tscYjp0PAtcWPdUW6quy3G7fDY-fKpi1z_OTrzJlNwNuyXeG5d2X-jqe-3rarU3RktQvm7LcO0WIyfhndk9l8-jC6m5GGCtWSTHCQUW6pVoInOhYiKcBqUMzojGYCmMhNVPBYW6syWigtdayzWBT9mMUFH6KL_d3G12-dCW26rjtf9S9TppiEiPGY9xTfU6HxZbU0_p-ikH77S_f-0t5f-uMvZfwLPFBjqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726042383</pqid></control><display><type>article</type><title>W1,p(·)-Regularity for a Class of Non-uniformly Elliptic Problems with Orlicz Growth</title><source>SpringerLink Journals - AutoHoldings</source><creator>Liang, Shuang ; Gao, Hongya ; Zheng, Shenzhou</creator><creatorcontrib>Liang, Shuang ; Gao, Hongya ; Zheng, Shenzhou</creatorcontrib><description>We prove a local
W
1
,
p
(
·
)
-regularity for the distributional solutions to double phase elliptic equations with Orlicz growth, and the variable exponents
p
(
x
)
>
1
satisfying the log-Hölder continuity. Moreover, we establish a local Calderón–Zygmund estimate for asymptotically regular double phase elliptic problems with Orlicz growth, which means that the nonlinearity is getting close to the regular problems when the gradient of its solution goes to infinity.</description><identifier>ISSN: 1660-5446</identifier><identifier>EISSN: 1660-5454</identifier><identifier>DOI: 10.1007/s00009-022-02176-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Continuity (mathematics) ; Elliptic functions ; Mathematics ; Mathematics and Statistics ; Regularity</subject><ispartof>Mediterranean journal of mathematics, 2022, Vol.19 (6)</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p157t-b53064cf1a7539a8559d0fa072eab1b5025ce4d38aff7b1d7a6a8ab85df7bb8d3</cites><orcidid>0000-0002-7909-0517</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00009-022-02176-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00009-022-02176-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Liang, Shuang</creatorcontrib><creatorcontrib>Gao, Hongya</creatorcontrib><creatorcontrib>Zheng, Shenzhou</creatorcontrib><title>W1,p(·)-Regularity for a Class of Non-uniformly Elliptic Problems with Orlicz Growth</title><title>Mediterranean journal of mathematics</title><addtitle>Mediterr. J. Math</addtitle><description>We prove a local
W
1
,
p
(
·
)
-regularity for the distributional solutions to double phase elliptic equations with Orlicz growth, and the variable exponents
p
(
x
)
>
1
satisfying the log-Hölder continuity. Moreover, we establish a local Calderón–Zygmund estimate for asymptotically regular double phase elliptic problems with Orlicz growth, which means that the nonlinearity is getting close to the regular problems when the gradient of its solution goes to infinity.</description><subject>Continuity (mathematics)</subject><subject>Elliptic functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Regularity</subject><issn>1660-5446</issn><issn>1660-5454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkN1KwzAUgIMoOKcv4FXAGwWjJ0mTtJcytikMJ-LwsqRtsnVkbU1axnwx730yqxM9cDg_fJwDH0LnFG4ogLoN0EdCgLE-qZKEHaABlRKIiER0-NdH8hidhLAGYAnlbIAWr_S6ufz8uCLPZtk57ct2h23tscYjp0PAtcWPdUW6quy3G7fDY-fKpi1z_OTrzJlNwNuyXeG5d2X-jqe-3rarU3RktQvm7LcO0WIyfhndk9l8-jC6m5GGCtWSTHCQUW6pVoInOhYiKcBqUMzojGYCmMhNVPBYW6syWigtdayzWBT9mMUFH6KL_d3G12-dCW26rjtf9S9TppiEiPGY9xTfU6HxZbU0_p-ikH77S_f-0t5f-uMvZfwLPFBjqA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Liang, Shuang</creator><creator>Gao, Hongya</creator><creator>Zheng, Shenzhou</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0002-7909-0517</orcidid></search><sort><creationdate>2022</creationdate><title>W1,p(·)-Regularity for a Class of Non-uniformly Elliptic Problems with Orlicz Growth</title><author>Liang, Shuang ; Gao, Hongya ; Zheng, Shenzhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-b53064cf1a7539a8559d0fa072eab1b5025ce4d38aff7b1d7a6a8ab85df7bb8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Continuity (mathematics)</topic><topic>Elliptic functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Regularity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Shuang</creatorcontrib><creatorcontrib>Gao, Hongya</creatorcontrib><creatorcontrib>Zheng, Shenzhou</creatorcontrib><jtitle>Mediterranean journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Shuang</au><au>Gao, Hongya</au><au>Zheng, Shenzhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>W1,p(·)-Regularity for a Class of Non-uniformly Elliptic Problems with Orlicz Growth</atitle><jtitle>Mediterranean journal of mathematics</jtitle><stitle>Mediterr. J. Math</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><issue>6</issue><issn>1660-5446</issn><eissn>1660-5454</eissn><abstract>We prove a local
W
1
,
p
(
·
)
-regularity for the distributional solutions to double phase elliptic equations with Orlicz growth, and the variable exponents
p
(
x
)
>
1
satisfying the log-Hölder continuity. Moreover, we establish a local Calderón–Zygmund estimate for asymptotically regular double phase elliptic problems with Orlicz growth, which means that the nonlinearity is getting close to the regular problems when the gradient of its solution goes to infinity.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00009-022-02176-2</doi><orcidid>https://orcid.org/0000-0002-7909-0517</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1660-5446 |
ispartof | Mediterranean journal of mathematics, 2022, Vol.19 (6) |
issn | 1660-5446 1660-5454 |
language | eng |
recordid | cdi_proquest_journals_2726042383 |
source | SpringerLink Journals - AutoHoldings |
subjects | Continuity (mathematics) Elliptic functions Mathematics Mathematics and Statistics Regularity |
title | W1,p(·)-Regularity for a Class of Non-uniformly Elliptic Problems with Orlicz Growth |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=W1,p(%C2%B7)-Regularity%20for%20a%20Class%20of%20Non-uniformly%20Elliptic%20Problems%20with%20Orlicz%20Growth&rft.jtitle=Mediterranean%20journal%20of%20mathematics&rft.au=Liang,%20Shuang&rft.date=2022&rft.volume=19&rft.issue=6&rft.issn=1660-5446&rft.eissn=1660-5454&rft_id=info:doi/10.1007/s00009-022-02176-2&rft_dat=%3Cproquest_sprin%3E2726042383%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726042383&rft_id=info:pmid/&rfr_iscdi=true |