W1,p(·)-Regularity for a Class of Non-uniformly Elliptic Problems with Orlicz Growth

We prove a local W 1 , p ( · ) -regularity for the distributional solutions to double phase elliptic equations with Orlicz growth, and the variable exponents p ( x ) > 1 satisfying the log-Hölder continuity. Moreover, we establish a local Calderón–Zygmund estimate for asymptotically regular doubl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mediterranean journal of mathematics 2022, Vol.19 (6)
Hauptverfasser: Liang, Shuang, Gao, Hongya, Zheng, Shenzhou
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Mediterranean journal of mathematics
container_volume 19
creator Liang, Shuang
Gao, Hongya
Zheng, Shenzhou
description We prove a local W 1 , p ( · ) -regularity for the distributional solutions to double phase elliptic equations with Orlicz growth, and the variable exponents p ( x ) > 1 satisfying the log-Hölder continuity. Moreover, we establish a local Calderón–Zygmund estimate for asymptotically regular double phase elliptic problems with Orlicz growth, which means that the nonlinearity is getting close to the regular problems when the gradient of its solution goes to infinity.
doi_str_mv 10.1007/s00009-022-02176-2
format Article
fullrecord <record><control><sourceid>proquest_sprin</sourceid><recordid>TN_cdi_proquest_journals_2726042383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2726042383</sourcerecordid><originalsourceid>FETCH-LOGICAL-p157t-b53064cf1a7539a8559d0fa072eab1b5025ce4d38aff7b1d7a6a8ab85df7bb8d3</originalsourceid><addsrcrecordid>eNpFkN1KwzAUgIMoOKcv4FXAGwWjJ0mTtJcytikMJ-LwsqRtsnVkbU1axnwx730yqxM9cDg_fJwDH0LnFG4ogLoN0EdCgLE-qZKEHaABlRKIiER0-NdH8hidhLAGYAnlbIAWr_S6ufz8uCLPZtk57ct2h23tscYjp0PAtcWPdUW6quy3G7fDY-fKpi1z_OTrzJlNwNuyXeG5d2X-jqe-3rarU3RktQvm7LcO0WIyfhndk9l8-jC6m5GGCtWSTHCQUW6pVoInOhYiKcBqUMzojGYCmMhNVPBYW6syWigtdayzWBT9mMUFH6KL_d3G12-dCW26rjtf9S9TppiEiPGY9xTfU6HxZbU0_p-ikH77S_f-0t5f-uMvZfwLPFBjqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2726042383</pqid></control><display><type>article</type><title>W1,p(·)-Regularity for a Class of Non-uniformly Elliptic Problems with Orlicz Growth</title><source>SpringerLink Journals - AutoHoldings</source><creator>Liang, Shuang ; Gao, Hongya ; Zheng, Shenzhou</creator><creatorcontrib>Liang, Shuang ; Gao, Hongya ; Zheng, Shenzhou</creatorcontrib><description>We prove a local W 1 , p ( · ) -regularity for the distributional solutions to double phase elliptic equations with Orlicz growth, and the variable exponents p ( x ) &gt; 1 satisfying the log-Hölder continuity. Moreover, we establish a local Calderón–Zygmund estimate for asymptotically regular double phase elliptic problems with Orlicz growth, which means that the nonlinearity is getting close to the regular problems when the gradient of its solution goes to infinity.</description><identifier>ISSN: 1660-5446</identifier><identifier>EISSN: 1660-5454</identifier><identifier>DOI: 10.1007/s00009-022-02176-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Continuity (mathematics) ; Elliptic functions ; Mathematics ; Mathematics and Statistics ; Regularity</subject><ispartof>Mediterranean journal of mathematics, 2022, Vol.19 (6)</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Switzerland AG 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p157t-b53064cf1a7539a8559d0fa072eab1b5025ce4d38aff7b1d7a6a8ab85df7bb8d3</cites><orcidid>0000-0002-7909-0517</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00009-022-02176-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00009-022-02176-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Liang, Shuang</creatorcontrib><creatorcontrib>Gao, Hongya</creatorcontrib><creatorcontrib>Zheng, Shenzhou</creatorcontrib><title>W1,p(·)-Regularity for a Class of Non-uniformly Elliptic Problems with Orlicz Growth</title><title>Mediterranean journal of mathematics</title><addtitle>Mediterr. J. Math</addtitle><description>We prove a local W 1 , p ( · ) -regularity for the distributional solutions to double phase elliptic equations with Orlicz growth, and the variable exponents p ( x ) &gt; 1 satisfying the log-Hölder continuity. Moreover, we establish a local Calderón–Zygmund estimate for asymptotically regular double phase elliptic problems with Orlicz growth, which means that the nonlinearity is getting close to the regular problems when the gradient of its solution goes to infinity.</description><subject>Continuity (mathematics)</subject><subject>Elliptic functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Regularity</subject><issn>1660-5446</issn><issn>1660-5454</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid/><recordid>eNpFkN1KwzAUgIMoOKcv4FXAGwWjJ0mTtJcytikMJ-LwsqRtsnVkbU1axnwx730yqxM9cDg_fJwDH0LnFG4ogLoN0EdCgLE-qZKEHaABlRKIiER0-NdH8hidhLAGYAnlbIAWr_S6ufz8uCLPZtk57ct2h23tscYjp0PAtcWPdUW6quy3G7fDY-fKpi1z_OTrzJlNwNuyXeG5d2X-jqe-3rarU3RktQvm7LcO0WIyfhndk9l8-jC6m5GGCtWSTHCQUW6pVoInOhYiKcBqUMzojGYCmMhNVPBYW6syWigtdayzWBT9mMUFH6KL_d3G12-dCW26rjtf9S9TppiEiPGY9xTfU6HxZbU0_p-ikH77S_f-0t5f-uMvZfwLPFBjqA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Liang, Shuang</creator><creator>Gao, Hongya</creator><creator>Zheng, Shenzhou</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope/><orcidid>https://orcid.org/0000-0002-7909-0517</orcidid></search><sort><creationdate>2022</creationdate><title>W1,p(·)-Regularity for a Class of Non-uniformly Elliptic Problems with Orlicz Growth</title><author>Liang, Shuang ; Gao, Hongya ; Zheng, Shenzhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p157t-b53064cf1a7539a8559d0fa072eab1b5025ce4d38aff7b1d7a6a8ab85df7bb8d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Continuity (mathematics)</topic><topic>Elliptic functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Regularity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Shuang</creatorcontrib><creatorcontrib>Gao, Hongya</creatorcontrib><creatorcontrib>Zheng, Shenzhou</creatorcontrib><jtitle>Mediterranean journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Shuang</au><au>Gao, Hongya</au><au>Zheng, Shenzhou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>W1,p(·)-Regularity for a Class of Non-uniformly Elliptic Problems with Orlicz Growth</atitle><jtitle>Mediterranean journal of mathematics</jtitle><stitle>Mediterr. J. Math</stitle><date>2022</date><risdate>2022</risdate><volume>19</volume><issue>6</issue><issn>1660-5446</issn><eissn>1660-5454</eissn><abstract>We prove a local W 1 , p ( · ) -regularity for the distributional solutions to double phase elliptic equations with Orlicz growth, and the variable exponents p ( x ) &gt; 1 satisfying the log-Hölder continuity. Moreover, we establish a local Calderón–Zygmund estimate for asymptotically regular double phase elliptic problems with Orlicz growth, which means that the nonlinearity is getting close to the regular problems when the gradient of its solution goes to infinity.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00009-022-02176-2</doi><orcidid>https://orcid.org/0000-0002-7909-0517</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1660-5446
ispartof Mediterranean journal of mathematics, 2022, Vol.19 (6)
issn 1660-5446
1660-5454
language eng
recordid cdi_proquest_journals_2726042383
source SpringerLink Journals - AutoHoldings
subjects Continuity (mathematics)
Elliptic functions
Mathematics
Mathematics and Statistics
Regularity
title W1,p(·)-Regularity for a Class of Non-uniformly Elliptic Problems with Orlicz Growth
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T05%3A09%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_sprin&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=W1,p(%C2%B7)-Regularity%20for%20a%20Class%20of%20Non-uniformly%20Elliptic%20Problems%20with%20Orlicz%20Growth&rft.jtitle=Mediterranean%20journal%20of%20mathematics&rft.au=Liang,%20Shuang&rft.date=2022&rft.volume=19&rft.issue=6&rft.issn=1660-5446&rft.eissn=1660-5454&rft_id=info:doi/10.1007/s00009-022-02176-2&rft_dat=%3Cproquest_sprin%3E2726042383%3C/proquest_sprin%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2726042383&rft_id=info:pmid/&rfr_iscdi=true